Proof of Theorem r3ex
Step | Hyp | Ref
| Expression |
1 | | r2ex 3202 |
. 2
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑧 ∈ 𝐶 𝜑)) |
2 | | df-rex 3077 |
. . . . 5
⊢
(∃𝑧 ∈
𝐶 𝜑 ↔ ∃𝑧(𝑧 ∈ 𝐶 ∧ 𝜑)) |
3 | 2 | anbi2i 622 |
. . . 4
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑧 ∈ 𝐶 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑧(𝑧 ∈ 𝐶 ∧ 𝜑))) |
4 | | 19.42v 1953 |
. . . 4
⊢
(∃𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐶 ∧ 𝜑)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑧(𝑧 ∈ 𝐶 ∧ 𝜑))) |
5 | | anass 468 |
. . . . . . 7
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐶 ∧ 𝜑))) |
6 | 5 | bicomi 224 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐶 ∧ 𝜑)) ↔ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶) ∧ 𝜑)) |
7 | | df-3an 1089 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶)) |
8 | 7 | bicomi 224 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)) |
9 | 6, 8 | bianbi 626 |
. . . . 5
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐶 ∧ 𝜑)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ 𝜑)) |
10 | 9 | exbii 1846 |
. . . 4
⊢
(∃𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐶 ∧ 𝜑)) ↔ ∃𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ 𝜑)) |
11 | 3, 4, 10 | 3bitr2i 299 |
. . 3
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑧 ∈ 𝐶 𝜑) ↔ ∃𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ 𝜑)) |
12 | 11 | 2exbii 1847 |
. 2
⊢
(∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑧 ∈ 𝐶 𝜑) ↔ ∃𝑥∃𝑦∃𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ 𝜑)) |
13 | 1, 12 | bitri 275 |
1
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜑 ↔ ∃𝑥∃𝑦∃𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ 𝜑)) |