| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rgen2 | Structured version Visualization version GIF version | ||
| Description: Generalization rule for restricted quantification, with two quantifiers. This theorem should be used in place of rgen2a 3355 since it depends on a smaller set of axioms. (Contributed by NM, 30-May-1999.) |
| Ref | Expression |
|---|---|
| rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
| Ref | Expression |
|---|---|
| rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
| 2 | 1 | ralrimiva 3133 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
| 3 | 2 | rgen 3054 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3053 |
| This theorem is referenced by: rgen3 3190 invdisjrab 5111 sosn 5746 isoid 7327 f1owe 7351 epweon 7774 epweonALT 7775 f1stres 8017 f2ndres 8018 fnwelem 8135 soseq 8163 issmo 8367 oawordeulem 8571 naddf 8698 ecopover 8840 unfilem2 9321 dffi2 9440 inficl 9442 fipwuni 9443 fisn 9444 dffi3 9448 cantnfvalf 9684 r111 9794 alephf1 10104 alephiso 10117 dfac5lem4 10145 dfac5lem4OLD 10147 kmlem9 10178 ackbij1lem17 10254 fin1a2lem2 10420 fin1a2lem4 10422 axcc2lem 10455 smobeth 10605 nqereu 10948 addpqf 10963 mulpqf 10965 genpdm 11021 axaddf 11164 axmulf 11165 subf 11489 mulnzcnf 11888 negiso 12227 cnref1o 13006 xaddf 13245 xmulf 13293 ioof 13469 om2uzf1oi 13976 om2uzisoi 13977 wrd2ind 14746 wwlktovf1 14981 reeff1 16143 divalglem9 16425 bitsf1 16470 smupf 16502 gcdf 16536 eucalgf 16607 qredeu 16682 1arith 16952 vdwapf 16997 xpsff1o 17586 catideu 17692 sscres 17841 fpwipodrs 18555 letsr 18608 mgmidmo 18643 frmdplusg 18837 efmndmgm 18868 smndex1mgm 18890 pwmnd 18920 mulgfval 19057 nmznsg 19156 efgmf 19699 efglem 19702 efgred 19734 isabli 19782 brric 20469 xrsmgm 21374 xrs1cmn 21379 xrge0subm 21380 xrsds 21382 cnsubmlem 21387 cnsubrglem 21389 cnsubrglemOLD 21390 nn0srg 21410 rge0srg 21411 pzriprnglem5 21451 pzriprnglem8 21454 rzgrp 21588 fibas 22920 fctop 22947 cctop 22949 iccordt 23157 txuni2 23508 fsubbas 23810 zfbas 23839 ismeti 24269 dscmet 24516 qtopbaslem 24702 tgqioo 24744 xrsxmet 24754 xrsdsre 24755 retopconn 24774 iccconn 24775 divcnOLD 24813 divcn 24815 abscncf 24850 recncf 24851 imcncf 24852 cjcncf 24853 iimulcn 24890 iimulcnOLD 24891 icopnfhmeo 24897 iccpnfhmeo 24899 xrhmeo 24900 cnllycmp 24911 bndth 24913 iundisj2 25507 dyadf 25549 reefiso 26415 recosf1o 26501 cxpcn3 26715 sgmf 27112 2lgslem1b 27360 lrcut 27872 addsf 27946 negscut 28002 negsf1o 28017 subsf 28025 mulscutlem 28091 onsiso 28226 bdayn0sf1o 28316 tgjustf 28457 ercgrg 28501 2wspmdisj 30323 isabloi 30537 smcnlem 30683 cncph 30805 hvsubf 31001 hhip 31163 hhph 31164 helch 31229 hsn0elch 31234 hhssabloilem 31247 hhshsslem2 31254 shscli 31303 shintcli 31315 pjmf1 31702 idunop 31964 0cnop 31965 0cnfn 31966 idcnop 31967 idhmop 31968 0hmop 31969 adj0 31980 lnophsi 31987 lnopunii 31998 lnophmi 32004 nlelshi 32046 riesz4i 32049 cnlnadjlem6 32058 cnlnadjlem9 32061 adjcoi 32086 bra11 32094 pjhmopi 32132 iundisj2f 32576 iundisj2fi 32779 xrstos 33007 xrge0omnd 33084 reofld 33364 xrge0slmod 33368 zringfrac 33574 iistmd 33938 cnre2csqima 33947 mndpluscn 33962 raddcn 33965 xrge0iifiso 33971 xrge0iifmhm 33975 xrge0pluscn 33976 cnzh 34004 rezh 34005 br2base 34306 sxbrsiga 34327 signswmnd 34594 cardpred 35126 nummin 35127 indispconn 35261 cnllysconn 35272 ioosconn 35274 rellysconn 35278 fmlaomn0 35417 gonan0 35419 goaln0 35420 mpomulnzcnf 36322 fneref 36373 dnicn 36515 f1omptsnlem 37359 isbasisrelowl 37381 poimirlem27 37676 mblfinlem1 37686 mblfinlem2 37687 exidu1 37885 rngoideu 37932 isomliN 39262 idlaut 40120 resubf 42399 sn-subf 42446 mzpclall 42725 frmx 42912 frmy 42913 kelac2lem 43063 onsucf1o 43271 ontric3g 43521 clsk1indlem3 44042 wfaxpr 44998 icof 45223 natglobalincr 46886 sprsymrelf1 47490 fmtnof1 47529 prmdvdsfmtnof1 47581 usgrexmpl2trifr 48021 uspgrsprf1 48102 plusfreseq 48119 nnsgrpmgm 48131 nnsgrp 48132 nn0mnd 48134 2zrngamgm 48200 2zrngmmgm 48207 2zrngnmrid 48211 ldepslinc 48465 rrx2xpref1o 48678 rrx2plordisom 48683 rescofuf 49036 |
| Copyright terms: Public domain | W3C validator |