![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rgen2 | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification, with two quantifiers. (Contributed by NM, 30-May-1999.) |
Ref | Expression |
---|---|
rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
Ref | Expression |
---|---|
rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
2 | 1 | ralrimiva 3147 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
3 | 2 | rgen 3103 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∈ wcel 2157 ∀wral 3089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ral 3094 |
This theorem is referenced by: rgen3 3157 invdisjrab 4830 f1stres 7425 f2ndres 7426 smobeth 9696 wrd2ind 13778 wrd2indOLD 13779 smupf 15535 xpsff1o 16543 efgmf 18439 efglem 18442 txuni2 21697 divcn 22999 abscncf 23032 recncf 23033 imcncf 23034 cjcncf 23035 cnllycmp 23083 bndth 23085 dyadf 23699 cxpcn3 24833 sgmf 25223 2lgslem1b 25469 tgjustf 25724 smcnlem 28077 helch 28625 hsn0elch 28630 hhshsslem2 28650 shscli 28701 shintcli 28713 0cnop 29363 0cnfn 29364 idcnop 29365 lnophsi 29385 nlelshi 29444 cnlnadjlem6 29456 cnzh 30530 rezh 30531 cnllysconn 31744 rellysconn 31750 fneref 32857 dnicn 32990 mblfinlem1 33935 mblfinlem2 33936 frmx 38263 frmy 38264 fmtnof1 42229 2zrngnmrid 42749 ldepslinc 43097 |
Copyright terms: Public domain | W3C validator |