| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rgen2 | Structured version Visualization version GIF version | ||
| Description: Generalization rule for restricted quantification, with two quantifiers. This theorem should be used in place of rgen2a 3342 since it depends on a smaller set of axioms. (Contributed by NM, 30-May-1999.) |
| Ref | Expression |
|---|---|
| rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
| Ref | Expression |
|---|---|
| rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
| 2 | 1 | ralrimiva 3125 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
| 3 | 2 | rgen 3046 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: rgen3 3180 invdisjrab 5089 sosn 5718 isoid 7286 f1owe 7310 epweon 7731 epweonALT 7732 f1stres 7971 f2ndres 7972 fnwelem 8087 soseq 8115 issmo 8294 oawordeulem 8495 naddf 8622 ecopover 8771 unfilem2 9231 dffi2 9350 inficl 9352 fipwuni 9353 fisn 9354 dffi3 9358 cantnfvalf 9594 r111 9704 alephf1 10014 alephiso 10027 dfac5lem4 10055 dfac5lem4OLD 10057 kmlem9 10088 ackbij1lem17 10164 fin1a2lem2 10330 fin1a2lem4 10332 axcc2lem 10365 smobeth 10515 nqereu 10858 addpqf 10873 mulpqf 10875 genpdm 10931 axaddf 11074 axmulf 11075 subf 11399 mulnzcnf 11800 negiso 12139 cnref1o 12920 xaddf 13160 xmulf 13208 ioof 13384 om2uzf1oi 13894 om2uzisoi 13895 wrd2ind 14664 wwlktovf1 14899 reeff1 16064 divalglem9 16347 bitsf1 16392 smupf 16424 gcdf 16458 eucalgf 16529 qredeu 16604 1arith 16874 vdwapf 16919 xpsff1o 17506 catideu 17612 sscres 17761 fpwipodrs 18475 letsr 18528 mgmidmo 18563 frmdplusg 18757 efmndmgm 18788 smndex1mgm 18810 pwmnd 18840 mulgfval 18977 nmznsg 19076 efgmf 19619 efglem 19622 efgred 19654 isabli 19702 brric 20389 xrsmgm 21294 xrs1cmn 21299 xrge0subm 21300 xrsds 21302 cnsubmlem 21307 cnsubrglem 21309 cnsubrglemOLD 21310 nn0srg 21330 rge0srg 21331 pzriprnglem5 21371 pzriprnglem8 21374 rzgrp 21508 fibas 22840 fctop 22867 cctop 22869 iccordt 23077 txuni2 23428 fsubbas 23730 zfbas 23759 ismeti 24189 dscmet 24436 qtopbaslem 24622 tgqioo 24664 xrsxmet 24674 xrsdsre 24675 retopconn 24694 iccconn 24695 divcnOLD 24733 divcn 24735 abscncf 24770 recncf 24771 imcncf 24772 cjcncf 24773 iimulcn 24810 iimulcnOLD 24811 icopnfhmeo 24817 iccpnfhmeo 24819 xrhmeo 24820 cnllycmp 24831 bndth 24833 iundisj2 25426 dyadf 25468 reefiso 26334 recosf1o 26420 cxpcn3 26634 sgmf 27031 2lgslem1b 27279 lrcut 27791 addsf 27865 negscut 27921 negsf1o 27936 subsf 27944 mulscutlem 28010 onsiso 28145 bdayn0sf1o 28235 tgjustf 28376 ercgrg 28420 2wspmdisj 30239 isabloi 30453 smcnlem 30599 cncph 30721 hvsubf 30917 hhip 31079 hhph 31080 helch 31145 hsn0elch 31150 hhssabloilem 31163 hhshsslem2 31170 shscli 31219 shintcli 31231 pjmf1 31618 idunop 31880 0cnop 31881 0cnfn 31882 idcnop 31883 idhmop 31884 0hmop 31885 adj0 31896 lnophsi 31903 lnopunii 31914 lnophmi 31920 nlelshi 31962 riesz4i 31965 cnlnadjlem6 31974 cnlnadjlem9 31977 adjcoi 32002 bra11 32010 pjhmopi 32048 iundisj2f 32492 iundisj2fi 32693 xrstos 32921 xrge0omnd 32998 reofld 33288 xrge0slmod 33292 zringfrac 33498 iistmd 33865 cnre2csqima 33874 mndpluscn 33889 raddcn 33892 xrge0iifiso 33898 xrge0iifmhm 33902 xrge0pluscn 33903 cnzh 33931 rezh 33932 br2base 34233 sxbrsiga 34254 signswmnd 34521 cardpred 35053 nummin 35054 indispconn 35194 cnllysconn 35205 ioosconn 35207 rellysconn 35211 fmlaomn0 35350 gonan0 35352 goaln0 35353 mpomulnzcnf 36260 fneref 36311 dnicn 36453 f1omptsnlem 37297 isbasisrelowl 37319 poimirlem27 37614 mblfinlem1 37624 mblfinlem2 37625 exidu1 37823 rngoideu 37870 isomliN 39205 idlaut 40063 resubf 42342 sn-subf 42390 mzpclall 42688 frmx 42875 frmy 42876 kelac2lem 43026 onsucf1o 43234 ontric3g 43484 clsk1indlem3 44005 wfaxpr 44961 icof 45186 natglobalincr 46848 sprsymrelf1 47470 fmtnof1 47509 prmdvdsfmtnof1 47561 usgrexmpl2trifr 48001 uspgrsprf1 48108 plusfreseq 48125 nnsgrpmgm 48137 nnsgrp 48138 nn0mnd 48140 2zrngamgm 48206 2zrngmmgm 48213 2zrngnmrid 48217 ldepslinc 48471 rrx2xpref1o 48680 rrx2plordisom 48685 rescofuf 49055 oppff1 49110 |
| Copyright terms: Public domain | W3C validator |