| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rgen2 | Structured version Visualization version GIF version | ||
| Description: Generalization rule for restricted quantification, with two quantifiers. This theorem should be used in place of rgen2a 3337 since it depends on a smaller set of axioms. (Contributed by NM, 30-May-1999.) |
| Ref | Expression |
|---|---|
| rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
| Ref | Expression |
|---|---|
| rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
| 2 | 1 | ralrimiva 3124 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
| 3 | 2 | rgen 3049 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3048 |
| This theorem is referenced by: rgen3 3177 invdisjrab 5073 sosn 5698 isoid 7258 f1owe 7282 epweon 7703 epweonALT 7704 f1stres 7940 f2ndres 7941 fnwelem 8056 soseq 8084 issmo 8263 oawordeulem 8464 naddf 8591 ecopover 8740 unfilem2 9185 dffi2 9302 inficl 9304 fipwuni 9305 fisn 9306 dffi3 9310 cantnfvalf 9550 r111 9663 alephf1 9971 alephiso 9984 dfac5lem4 10012 dfac5lem4OLD 10014 kmlem9 10045 ackbij1lem17 10121 fin1a2lem2 10287 fin1a2lem4 10289 axcc2lem 10322 smobeth 10472 nqereu 10815 addpqf 10830 mulpqf 10832 genpdm 10888 axaddf 11031 axmulf 11032 subf 11357 mulnzcnf 11758 negiso 12097 cnref1o 12878 xaddf 13118 xmulf 13166 ioof 13342 om2uzf1oi 13855 om2uzisoi 13856 wrd2ind 14625 wwlktovf1 14859 reeff1 16024 divalglem9 16307 bitsf1 16352 smupf 16384 gcdf 16418 eucalgf 16489 qredeu 16564 1arith 16834 vdwapf 16879 xpsff1o 17466 catideu 17576 sscres 17725 fpwipodrs 18441 letsr 18494 chninf 18536 mgmidmo 18563 frmdplusg 18757 efmndmgm 18788 smndex1mgm 18810 pwmnd 18840 mulgfval 18977 nmznsg 19075 efgmf 19620 efglem 19623 efgred 19655 isabli 19703 brric 20414 xrsmgm 21338 xrsds 21341 cnsubmlem 21346 cnsubrglem 21348 cnsubrglemOLD 21349 nn0srg 21369 rge0srg 21370 xrs1cmn 21374 xrge0subm 21375 xrge0omnd 21377 pzriprnglem5 21417 pzriprnglem8 21420 rzgrp 21555 fibas 22887 fctop 22914 cctop 22916 iccordt 23124 txuni2 23475 fsubbas 23777 zfbas 23806 ismeti 24235 dscmet 24482 qtopbaslem 24668 tgqioo 24710 xrsxmet 24720 xrsdsre 24721 retopconn 24740 iccconn 24741 divcnOLD 24779 divcn 24781 abscncf 24816 recncf 24817 imcncf 24818 cjcncf 24819 iimulcn 24856 iimulcnOLD 24857 icopnfhmeo 24863 iccpnfhmeo 24865 xrhmeo 24866 cnllycmp 24877 bndth 24879 iundisj2 25472 dyadf 25514 reefiso 26380 recosf1o 26466 cxpcn3 26680 sgmf 27077 2lgslem1b 27325 lrcut 27844 addsf 27920 negscut 27976 negsf1o 27991 subsf 27999 mulscutlem 28065 onsiso 28200 bdayn0sf1o 28290 zsoring 28327 tgjustf 28446 ercgrg 28490 2wspmdisj 30309 isabloi 30523 smcnlem 30669 cncph 30791 hvsubf 30987 hhip 31149 hhph 31150 helch 31215 hsn0elch 31220 hhssabloilem 31233 hhshsslem2 31240 shscli 31289 shintcli 31301 pjmf1 31688 idunop 31950 0cnop 31951 0cnfn 31952 idcnop 31953 idhmop 31954 0hmop 31955 adj0 31966 lnophsi 31973 lnopunii 31984 lnophmi 31990 nlelshi 32032 riesz4i 32035 cnlnadjlem6 32044 cnlnadjlem9 32047 adjcoi 32072 bra11 32080 pjhmopi 32118 iundisj2f 32562 iundisj2fi 32771 xrstos 32983 reofld 33300 xrge0slmod 33305 zringfrac 33511 iistmd 33907 cnre2csqima 33916 mndpluscn 33931 raddcn 33934 xrge0iifiso 33940 xrge0iifmhm 33944 xrge0pluscn 33945 cnzh 33973 rezh 33974 br2base 34274 sxbrsiga 34295 signswmnd 34562 cardpred 35095 nummin 35096 indispconn 35270 cnllysconn 35281 ioosconn 35283 rellysconn 35287 fmlaomn0 35426 gonan0 35428 goaln0 35429 mpomulnzcnf 36333 fneref 36384 dnicn 36526 f1omptsnlem 37370 isbasisrelowl 37392 poimirlem27 37687 mblfinlem1 37697 mblfinlem2 37698 exidu1 37896 rngoideu 37943 isomliN 39278 idlaut 40135 resubf 42414 sn-subf 42462 mzpclall 42760 frmx 42946 frmy 42947 kelac2lem 43097 onsucf1o 43305 ontric3g 43555 clsk1indlem3 44076 wfaxpr 45031 icof 45256 natglobalincr 46915 sprsymrelf1 47527 fmtnof1 47566 prmdvdsfmtnof1 47618 usgrexmpl2trifr 48068 uspgrsprf1 48178 plusfreseq 48195 nnsgrpmgm 48207 nnsgrp 48208 nn0mnd 48210 2zrngamgm 48276 2zrngmmgm 48283 2zrngnmrid 48287 ldepslinc 48541 rrx2xpref1o 48750 rrx2plordisom 48755 rescofuf 49125 oppff1 49180 |
| Copyright terms: Public domain | W3C validator |