| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rgen2 | Structured version Visualization version GIF version | ||
| Description: Generalization rule for restricted quantification, with two quantifiers. This theorem should be used in place of rgen2a 3334 since it depends on a smaller set of axioms. (Contributed by NM, 30-May-1999.) |
| Ref | Expression |
|---|---|
| rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
| Ref | Expression |
|---|---|
| rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
| 2 | 1 | ralrimiva 3121 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
| 3 | 2 | rgen 3046 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: rgen3 3174 invdisjrab 5079 sosn 5706 isoid 7266 f1owe 7290 epweon 7711 epweonALT 7712 f1stres 7948 f2ndres 7949 fnwelem 8064 soseq 8092 issmo 8271 oawordeulem 8472 naddf 8599 ecopover 8748 unfilem2 9195 dffi2 9313 inficl 9315 fipwuni 9316 fisn 9317 dffi3 9321 cantnfvalf 9561 r111 9671 alephf1 9979 alephiso 9992 dfac5lem4 10020 dfac5lem4OLD 10022 kmlem9 10053 ackbij1lem17 10129 fin1a2lem2 10295 fin1a2lem4 10297 axcc2lem 10330 smobeth 10480 nqereu 10823 addpqf 10838 mulpqf 10840 genpdm 10896 axaddf 11039 axmulf 11040 subf 11365 mulnzcnf 11766 negiso 12105 cnref1o 12886 xaddf 13126 xmulf 13174 ioof 13350 om2uzf1oi 13860 om2uzisoi 13861 wrd2ind 14629 wwlktovf1 14864 reeff1 16029 divalglem9 16312 bitsf1 16357 smupf 16389 gcdf 16423 eucalgf 16494 qredeu 16569 1arith 16839 vdwapf 16884 xpsff1o 17471 catideu 17581 sscres 17730 fpwipodrs 18446 letsr 18499 mgmidmo 18534 frmdplusg 18728 efmndmgm 18759 smndex1mgm 18781 pwmnd 18811 mulgfval 18948 nmznsg 19047 efgmf 19592 efglem 19595 efgred 19627 isabli 19675 brric 20389 xrsmgm 21313 xrsds 21316 cnsubmlem 21321 cnsubrglem 21323 cnsubrglemOLD 21324 nn0srg 21344 rge0srg 21345 xrs1cmn 21349 xrge0subm 21350 xrge0omnd 21352 pzriprnglem5 21392 pzriprnglem8 21395 rzgrp 21530 fibas 22862 fctop 22889 cctop 22891 iccordt 23099 txuni2 23450 fsubbas 23752 zfbas 23781 ismeti 24211 dscmet 24458 qtopbaslem 24644 tgqioo 24686 xrsxmet 24696 xrsdsre 24697 retopconn 24716 iccconn 24717 divcnOLD 24755 divcn 24757 abscncf 24792 recncf 24793 imcncf 24794 cjcncf 24795 iimulcn 24832 iimulcnOLD 24833 icopnfhmeo 24839 iccpnfhmeo 24841 xrhmeo 24842 cnllycmp 24853 bndth 24855 iundisj2 25448 dyadf 25490 reefiso 26356 recosf1o 26442 cxpcn3 26656 sgmf 27053 2lgslem1b 27301 lrcut 27818 addsf 27894 negscut 27950 negsf1o 27965 subsf 27973 mulscutlem 28039 onsiso 28174 bdayn0sf1o 28264 zsoring 28301 tgjustf 28418 ercgrg 28462 2wspmdisj 30281 isabloi 30495 smcnlem 30641 cncph 30763 hvsubf 30959 hhip 31121 hhph 31122 helch 31187 hsn0elch 31192 hhssabloilem 31205 hhshsslem2 31212 shscli 31261 shintcli 31273 pjmf1 31660 idunop 31922 0cnop 31923 0cnfn 31924 idcnop 31925 idhmop 31926 0hmop 31927 adj0 31938 lnophsi 31945 lnopunii 31956 lnophmi 31962 nlelshi 32004 riesz4i 32007 cnlnadjlem6 32016 cnlnadjlem9 32019 adjcoi 32044 bra11 32052 pjhmopi 32090 iundisj2f 32534 iundisj2fi 32740 xrstos 32964 reofld 33281 xrge0slmod 33285 zringfrac 33491 iistmd 33869 cnre2csqima 33878 mndpluscn 33893 raddcn 33896 xrge0iifiso 33902 xrge0iifmhm 33906 xrge0pluscn 33907 cnzh 33935 rezh 33936 br2base 34237 sxbrsiga 34258 signswmnd 34525 cardpred 35057 nummin 35058 indispconn 35207 cnllysconn 35218 ioosconn 35220 rellysconn 35224 fmlaomn0 35363 gonan0 35365 goaln0 35366 mpomulnzcnf 36273 fneref 36324 dnicn 36466 f1omptsnlem 37310 isbasisrelowl 37332 poimirlem27 37627 mblfinlem1 37637 mblfinlem2 37638 exidu1 37836 rngoideu 37883 isomliN 39218 idlaut 40075 resubf 42354 sn-subf 42402 mzpclall 42700 frmx 42886 frmy 42887 kelac2lem 43037 onsucf1o 43245 ontric3g 43495 clsk1indlem3 44016 wfaxpr 44972 icof 45197 natglobalincr 46858 sprsymrelf1 47480 fmtnof1 47519 prmdvdsfmtnof1 47571 usgrexmpl2trifr 48021 uspgrsprf1 48131 plusfreseq 48148 nnsgrpmgm 48160 nnsgrp 48161 nn0mnd 48163 2zrngamgm 48229 2zrngmmgm 48236 2zrngnmrid 48240 ldepslinc 48494 rrx2xpref1o 48703 rrx2plordisom 48708 rescofuf 49078 oppff1 49133 |
| Copyright terms: Public domain | W3C validator |