Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rgen2 | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification, with two quantifiers. This theorem should be used in place of rgen2a 3155 since it depends on a smaller set of axioms. (Contributed by NM, 30-May-1999.) |
Ref | Expression |
---|---|
rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
Ref | Expression |
---|---|
rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
2 | 1 | ralrimiva 3107 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
3 | 2 | rgen 3073 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ral 3068 |
This theorem is referenced by: rgen3 3127 invdisjrabw 5055 invdisjrab 5056 sosn 5664 isoid 7180 f1owe 7204 epweon 7603 f1stres 7828 f2ndres 7829 fnwelem 7943 issmo 8150 oawordeulem 8347 ecopover 8568 unfilem2 9009 dffi2 9112 inficl 9114 fipwuni 9115 fisn 9116 dffi3 9120 cantnfvalf 9353 r111 9464 alephf1 9772 alephiso 9785 dfac5lem4 9813 kmlem9 9845 ackbij1lem17 9923 fin1a2lem2 10088 fin1a2lem4 10090 axcc2lem 10123 smobeth 10273 nqereu 10616 addpqf 10631 mulpqf 10633 genpdm 10689 axaddf 10832 axmulf 10833 subf 11153 mulnzcnopr 11551 negiso 11885 cnref1o 12654 xaddf 12887 xmulf 12935 ioof 13108 om2uzf1oi 13601 om2uzisoi 13602 wrd2ind 14364 wwlktovf1 14600 reeff1 15757 divalglem9 16038 bitsf1 16081 smupf 16113 gcdf 16147 eucalgf 16216 qredeu 16291 1arith 16556 vdwapf 16601 xpsff1o 17195 catideu 17301 sscres 17452 fpwipodrs 18173 letsr 18226 mgmidmo 18259 frmdplusg 18408 efmndmgm 18439 smndex1mgm 18461 pwmnd 18491 mulgfval 18617 nmznsg 18711 efgmf 19234 efglem 19237 efgred 19269 isabli 19316 brric 19903 xrsmgm 20545 xrs1cmn 20550 xrge0subm 20551 xrsds 20553 cnsubmlem 20558 cnsubrglem 20560 nn0srg 20580 rge0srg 20581 rzgrp 20740 fibas 22035 fctop 22062 cctop 22064 iccordt 22273 txuni2 22624 fsubbas 22926 zfbas 22955 ismeti 23386 dscmet 23634 qtopbaslem 23828 tgqioo 23869 xrsxmet 23878 xrsdsre 23879 retopconn 23898 iccconn 23899 divcn 23937 abscncf 23970 recncf 23971 imcncf 23972 cjcncf 23973 iimulcn 24007 icopnfhmeo 24012 iccpnfhmeo 24014 xrhmeo 24015 cnllycmp 24025 bndth 24027 iundisj2 24618 dyadf 24660 reefiso 25512 recosf1o 25596 cxpcn3 25806 sgmf 26199 2lgslem1b 26445 tgjustf 26738 ercgrg 26782 2wspmdisj 28602 isabloi 28814 smcnlem 28960 cncph 29082 hvsubf 29278 hhip 29440 hhph 29441 helch 29506 hsn0elch 29511 hhssabloilem 29524 hhshsslem2 29531 shscli 29580 shintcli 29592 pjmf1 29979 idunop 30241 0cnop 30242 0cnfn 30243 idcnop 30244 idhmop 30245 0hmop 30246 adj0 30257 lnophsi 30264 lnopunii 30275 lnophmi 30281 nlelshi 30323 riesz4i 30326 cnlnadjlem6 30335 cnlnadjlem9 30338 adjcoi 30363 bra11 30371 pjhmopi 30409 iundisj2f 30830 iundisj2fi 31020 xrstos 31190 xrge0omnd 31239 reofld 31446 xrge0slmod 31450 iistmd 31754 cnre2csqima 31763 mndpluscn 31778 raddcn 31781 xrge0iifiso 31787 xrge0iifmhm 31791 xrge0pluscn 31792 cnzh 31820 rezh 31821 br2base 32136 sxbrsiga 32157 signswmnd 32436 cardpred 32962 nummin 32963 indispconn 33096 cnllysconn 33107 ioosconn 33109 rellysconn 33113 fmlaomn0 33252 gonan0 33254 goaln0 33255 soseq 33730 lrcut 34010 fneref 34466 dnicn 34599 f1omptsnlem 35434 isbasisrelowl 35456 poimirlem27 35731 mblfinlem1 35741 mblfinlem2 35742 exidu1 35941 rngoideu 35988 isomliN 37180 idlaut 38037 resubf 40285 sn-subf 40331 mzpclall 40465 frmx 40651 frmy 40652 kelac2lem 40805 ontric3g 41027 clsk1indlem3 41542 icof 42648 sprsymrelf1 44836 fmtnof1 44875 prmdvdsfmtnof1 44927 uspgrsprf1 45197 plusfreseq 45214 nnsgrpmgm 45258 nnsgrp 45259 nn0mnd 45261 2zrngamgm 45385 2zrngmmgm 45392 2zrngnmrid 45396 ldepslinc 45738 rrx2xpref1o 45952 rrx2plordisom 45957 |
Copyright terms: Public domain | W3C validator |