![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rgen2 | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification, with two quantifiers. This theorem should be used in place of rgen2a 3368 since it depends on a smaller set of axioms. (Contributed by NM, 30-May-1999.) |
Ref | Expression |
---|---|
rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
Ref | Expression |
---|---|
rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
2 | 1 | ralrimiva 3147 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
3 | 2 | rgen 3064 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ral 3063 |
This theorem is referenced by: rgen3 3203 invdisjrabw 5134 invdisjrab 5135 sosn 5763 isoid 7326 f1owe 7350 epweon 7762 epweonALT 7763 f1stres 7999 f2ndres 8000 fnwelem 8117 soseq 8145 issmo 8348 oawordeulem 8554 naddf 8680 ecopover 8815 unfilem2 9311 dffi2 9418 inficl 9420 fipwuni 9421 fisn 9422 dffi3 9426 cantnfvalf 9660 r111 9770 alephf1 10080 alephiso 10093 dfac5lem4 10121 kmlem9 10153 ackbij1lem17 10231 fin1a2lem2 10396 fin1a2lem4 10398 axcc2lem 10431 smobeth 10581 nqereu 10924 addpqf 10939 mulpqf 10941 genpdm 10997 axaddf 11140 axmulf 11141 subf 11462 mulnzcnopr 11860 negiso 12194 cnref1o 12969 xaddf 13203 xmulf 13251 ioof 13424 om2uzf1oi 13918 om2uzisoi 13919 wrd2ind 14673 wwlktovf1 14908 reeff1 16063 divalglem9 16344 bitsf1 16387 smupf 16419 gcdf 16453 eucalgf 16520 qredeu 16595 1arith 16860 vdwapf 16905 xpsff1o 17513 catideu 17619 sscres 17770 fpwipodrs 18493 letsr 18546 mgmidmo 18579 frmdplusg 18735 efmndmgm 18766 smndex1mgm 18788 pwmnd 18818 mulgfval 18952 nmznsg 19048 efgmf 19581 efglem 19584 efgred 19616 isabli 19664 brric 20283 xrsmgm 20980 xrs1cmn 20985 xrge0subm 20986 xrsds 20988 cnsubmlem 20993 cnsubrglem 20995 nn0srg 21015 rge0srg 21016 rzgrp 21176 fibas 22480 fctop 22507 cctop 22509 iccordt 22718 txuni2 23069 fsubbas 23371 zfbas 23400 ismeti 23831 dscmet 24081 qtopbaslem 24275 tgqioo 24316 xrsxmet 24325 xrsdsre 24326 retopconn 24345 iccconn 24346 divcn 24384 abscncf 24417 recncf 24418 imcncf 24419 cjcncf 24420 iimulcn 24454 icopnfhmeo 24459 iccpnfhmeo 24461 xrhmeo 24462 cnllycmp 24472 bndth 24474 iundisj2 25066 dyadf 25108 reefiso 25960 recosf1o 26044 cxpcn3 26256 sgmf 26649 2lgslem1b 26895 lrcut 27397 addsf 27466 negscut 27513 negsf1o 27528 mulscutlem 27587 tgjustf 27724 ercgrg 27768 2wspmdisj 29590 isabloi 29804 smcnlem 29950 cncph 30072 hvsubf 30268 hhip 30430 hhph 30431 helch 30496 hsn0elch 30501 hhssabloilem 30514 hhshsslem2 30521 shscli 30570 shintcli 30582 pjmf1 30969 idunop 31231 0cnop 31232 0cnfn 31233 idcnop 31234 idhmop 31235 0hmop 31236 adj0 31247 lnophsi 31254 lnopunii 31265 lnophmi 31271 nlelshi 31313 riesz4i 31316 cnlnadjlem6 31325 cnlnadjlem9 31328 adjcoi 31353 bra11 31361 pjhmopi 31399 iundisj2f 31821 iundisj2fi 32008 xrstos 32180 xrge0omnd 32229 reofld 32459 xrge0slmod 32463 iistmd 32882 cnre2csqima 32891 mndpluscn 32906 raddcn 32909 xrge0iifiso 32915 xrge0iifmhm 32919 xrge0pluscn 32920 cnzh 32950 rezh 32951 br2base 33268 sxbrsiga 33289 signswmnd 33568 cardpred 34093 nummin 34094 indispconn 34225 cnllysconn 34236 ioosconn 34238 rellysconn 34242 fmlaomn0 34381 gonan0 34383 goaln0 34384 gg-divcn 35163 gg-iimulcn 35169 fneref 35235 dnicn 35368 f1omptsnlem 36217 isbasisrelowl 36239 poimirlem27 36515 mblfinlem1 36525 mblfinlem2 36526 exidu1 36724 rngoideu 36771 isomliN 38109 idlaut 38967 resubf 41254 sn-subf 41301 mzpclall 41465 frmx 41652 frmy 41653 kelac2lem 41806 onsucf1o 42022 ontric3g 42273 clsk1indlem3 42794 icof 43918 natglobalincr 45591 sprsymrelf1 46164 fmtnof1 46203 prmdvdsfmtnof1 46255 uspgrsprf1 46525 plusfreseq 46542 nnsgrpmgm 46586 nnsgrp 46587 nn0mnd 46589 pzriprnglem5 46809 pzriprnglem8 46812 2zrngamgm 46837 2zrngmmgm 46844 2zrngnmrid 46848 ldepslinc 47190 rrx2xpref1o 47404 rrx2plordisom 47409 |
Copyright terms: Public domain | W3C validator |