Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rgen2 | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification, with two quantifiers. This theorem should be used in place of rgen2a 3158 since it depends on a smaller set of axioms. (Contributed by NM, 30-May-1999.) |
Ref | Expression |
---|---|
rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
Ref | Expression |
---|---|
rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
2 | 1 | ralrimiva 3110 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
3 | 2 | rgen 3076 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2110 ∀wral 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ral 3071 |
This theorem is referenced by: rgen3 3130 invdisjrabw 5064 invdisjrab 5065 sosn 5674 isoid 7196 f1owe 7220 epweon 7619 epweonOLD 7620 f1stres 7848 f2ndres 7849 fnwelem 7963 issmo 8170 oawordeulem 8370 ecopover 8593 unfilem2 9057 dffi2 9160 inficl 9162 fipwuni 9163 fisn 9164 dffi3 9168 cantnfvalf 9401 r111 9534 alephf1 9842 alephiso 9855 dfac5lem4 9883 kmlem9 9915 ackbij1lem17 9993 fin1a2lem2 10158 fin1a2lem4 10160 axcc2lem 10193 smobeth 10343 nqereu 10686 addpqf 10701 mulpqf 10703 genpdm 10759 axaddf 10902 axmulf 10903 subf 11223 mulnzcnopr 11621 negiso 11955 cnref1o 12724 xaddf 12957 xmulf 13005 ioof 13178 om2uzf1oi 13671 om2uzisoi 13672 wrd2ind 14434 wwlktovf1 14670 reeff1 15827 divalglem9 16108 bitsf1 16151 smupf 16183 gcdf 16217 eucalgf 16286 qredeu 16361 1arith 16626 vdwapf 16671 xpsff1o 17276 catideu 17382 sscres 17533 fpwipodrs 18256 letsr 18309 mgmidmo 18342 frmdplusg 18491 efmndmgm 18522 smndex1mgm 18544 pwmnd 18574 mulgfval 18700 nmznsg 18794 efgmf 19317 efglem 19320 efgred 19352 isabli 19399 brric 19986 xrsmgm 20631 xrs1cmn 20636 xrge0subm 20637 xrsds 20639 cnsubmlem 20644 cnsubrglem 20646 nn0srg 20666 rge0srg 20667 rzgrp 20826 fibas 22125 fctop 22152 cctop 22154 iccordt 22363 txuni2 22714 fsubbas 23016 zfbas 23045 ismeti 23476 dscmet 23726 qtopbaslem 23920 tgqioo 23961 xrsxmet 23970 xrsdsre 23971 retopconn 23990 iccconn 23991 divcn 24029 abscncf 24062 recncf 24063 imcncf 24064 cjcncf 24065 iimulcn 24099 icopnfhmeo 24104 iccpnfhmeo 24106 xrhmeo 24107 cnllycmp 24117 bndth 24119 iundisj2 24711 dyadf 24753 reefiso 25605 recosf1o 25689 cxpcn3 25899 sgmf 26292 2lgslem1b 26538 tgjustf 26832 ercgrg 26876 2wspmdisj 28697 isabloi 28909 smcnlem 29055 cncph 29177 hvsubf 29373 hhip 29535 hhph 29536 helch 29601 hsn0elch 29606 hhssabloilem 29619 hhshsslem2 29626 shscli 29675 shintcli 29687 pjmf1 30074 idunop 30336 0cnop 30337 0cnfn 30338 idcnop 30339 idhmop 30340 0hmop 30341 adj0 30352 lnophsi 30359 lnopunii 30370 lnophmi 30376 nlelshi 30418 riesz4i 30421 cnlnadjlem6 30430 cnlnadjlem9 30433 adjcoi 30458 bra11 30466 pjhmopi 30504 iundisj2f 30925 iundisj2fi 31114 xrstos 31284 xrge0omnd 31333 reofld 31540 xrge0slmod 31544 iistmd 31848 cnre2csqima 31857 mndpluscn 31872 raddcn 31875 xrge0iifiso 31881 xrge0iifmhm 31885 xrge0pluscn 31886 cnzh 31916 rezh 31917 br2base 32232 sxbrsiga 32253 signswmnd 32532 cardpred 33058 nummin 33059 indispconn 33192 cnllysconn 33203 ioosconn 33205 rellysconn 33209 fmlaomn0 33348 gonan0 33350 goaln0 33351 soseq 33799 lrcut 34079 fneref 34535 dnicn 34668 f1omptsnlem 35503 isbasisrelowl 35525 poimirlem27 35800 mblfinlem1 35810 mblfinlem2 35811 exidu1 36010 rngoideu 36057 isomliN 37249 idlaut 38106 resubf 40361 sn-subf 40407 mzpclall 40546 frmx 40732 frmy 40733 kelac2lem 40886 ontric3g 41108 clsk1indlem3 41623 icof 42729 sprsymrelf1 44917 fmtnof1 44956 prmdvdsfmtnof1 45008 uspgrsprf1 45278 plusfreseq 45295 nnsgrpmgm 45339 nnsgrp 45340 nn0mnd 45342 2zrngamgm 45466 2zrngmmgm 45473 2zrngnmrid 45477 ldepslinc 45819 rrx2xpref1o 46033 rrx2plordisom 46038 |
Copyright terms: Public domain | W3C validator |