![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rgen2 | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification, with two quantifiers. This theorem should be used in place of rgen2a 3379 since it depends on a smaller set of axioms. (Contributed by NM, 30-May-1999.) |
Ref | Expression |
---|---|
rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
Ref | Expression |
---|---|
rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
2 | 1 | ralrimiva 3152 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
3 | 2 | rgen 3069 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3068 |
This theorem is referenced by: rgen3 3210 invdisjrab 5153 sosn 5786 isoid 7365 f1owe 7389 epweon 7810 epweonALT 7811 f1stres 8054 f2ndres 8055 fnwelem 8172 soseq 8200 issmo 8404 oawordeulem 8610 naddf 8737 ecopover 8879 unfilem2 9372 dffi2 9492 inficl 9494 fipwuni 9495 fisn 9496 dffi3 9500 cantnfvalf 9734 r111 9844 alephf1 10154 alephiso 10167 dfac5lem4 10195 dfac5lem4OLD 10197 kmlem9 10228 ackbij1lem17 10304 fin1a2lem2 10470 fin1a2lem4 10472 axcc2lem 10505 smobeth 10655 nqereu 10998 addpqf 11013 mulpqf 11015 genpdm 11071 axaddf 11214 axmulf 11215 subf 11538 mulnzcnf 11936 negiso 12275 cnref1o 13050 xaddf 13286 xmulf 13334 ioof 13507 om2uzf1oi 14004 om2uzisoi 14005 wrd2ind 14771 wwlktovf1 15006 reeff1 16168 divalglem9 16449 bitsf1 16492 smupf 16524 gcdf 16558 eucalgf 16630 qredeu 16705 1arith 16974 vdwapf 17019 xpsff1o 17627 catideu 17733 sscres 17884 fpwipodrs 18610 letsr 18663 mgmidmo 18698 frmdplusg 18889 efmndmgm 18920 smndex1mgm 18942 pwmnd 18972 mulgfval 19109 nmznsg 19208 efgmf 19755 efglem 19758 efgred 19790 isabli 19838 brric 20530 xrsmgm 21442 xrs1cmn 21447 xrge0subm 21448 xrsds 21450 cnsubmlem 21455 cnsubrglem 21457 cnsubrglemOLD 21458 nn0srg 21478 rge0srg 21479 pzriprnglem5 21519 pzriprnglem8 21522 rzgrp 21664 fibas 23005 fctop 23032 cctop 23034 iccordt 23243 txuni2 23594 fsubbas 23896 zfbas 23925 ismeti 24356 dscmet 24606 qtopbaslem 24800 tgqioo 24841 xrsxmet 24850 xrsdsre 24851 retopconn 24870 iccconn 24871 divcnOLD 24909 divcn 24911 abscncf 24946 recncf 24947 imcncf 24948 cjcncf 24949 iimulcn 24986 iimulcnOLD 24987 icopnfhmeo 24993 iccpnfhmeo 24995 xrhmeo 24996 cnllycmp 25007 bndth 25009 iundisj2 25603 dyadf 25645 reefiso 26510 recosf1o 26595 cxpcn3 26809 sgmf 27206 2lgslem1b 27454 lrcut 27959 addsf 28033 negscut 28089 negsf1o 28104 subsf 28112 mulscutlem 28175 tgjustf 28499 ercgrg 28543 2wspmdisj 30369 isabloi 30583 smcnlem 30729 cncph 30851 hvsubf 31047 hhip 31209 hhph 31210 helch 31275 hsn0elch 31280 hhssabloilem 31293 hhshsslem2 31300 shscli 31349 shintcli 31361 pjmf1 31748 idunop 32010 0cnop 32011 0cnfn 32012 idcnop 32013 idhmop 32014 0hmop 32015 adj0 32026 lnophsi 32033 lnopunii 32044 lnophmi 32050 nlelshi 32092 riesz4i 32095 cnlnadjlem6 32104 cnlnadjlem9 32107 adjcoi 32132 bra11 32140 pjhmopi 32178 iundisj2f 32612 iundisj2fi 32802 xrstos 32993 xrge0omnd 33061 reofld 33337 xrge0slmod 33341 zringfrac 33547 iistmd 33848 cnre2csqima 33857 mndpluscn 33872 raddcn 33875 xrge0iifiso 33881 xrge0iifmhm 33885 xrge0pluscn 33886 cnzh 33916 rezh 33917 br2base 34234 sxbrsiga 34255 signswmnd 34534 cardpred 35066 nummin 35067 indispconn 35202 cnllysconn 35213 ioosconn 35215 rellysconn 35219 fmlaomn0 35358 gonan0 35360 goaln0 35361 mpomulnzcnf 36265 fneref 36316 dnicn 36458 f1omptsnlem 37302 isbasisrelowl 37324 poimirlem27 37607 mblfinlem1 37617 mblfinlem2 37618 exidu1 37816 rngoideu 37863 isomliN 39195 idlaut 40053 resubf 42357 sn-subf 42404 mzpclall 42683 frmx 42870 frmy 42871 kelac2lem 43021 onsucf1o 43234 ontric3g 43484 clsk1indlem3 44005 icof 45126 natglobalincr 46796 sprsymrelf1 47370 fmtnof1 47409 prmdvdsfmtnof1 47461 usgrexmpl2trifr 47852 uspgrsprf1 47870 plusfreseq 47887 nnsgrpmgm 47899 nnsgrp 47900 nn0mnd 47902 2zrngamgm 47968 2zrngmmgm 47975 2zrngnmrid 47979 ldepslinc 48238 rrx2xpref1o 48452 rrx2plordisom 48457 |
Copyright terms: Public domain | W3C validator |