| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rgen2 | Structured version Visualization version GIF version | ||
| Description: Generalization rule for restricted quantification, with two quantifiers. This theorem should be used in place of rgen2a 3370 since it depends on a smaller set of axioms. (Contributed by NM, 30-May-1999.) |
| Ref | Expression |
|---|---|
| rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
| Ref | Expression |
|---|---|
| rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
| 2 | 1 | ralrimiva 3145 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
| 3 | 2 | rgen 3062 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∀wral 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3061 |
| This theorem is referenced by: rgen3 3203 invdisjrab 5129 sosn 5771 isoid 7350 f1owe 7374 epweon 7796 epweonALT 7797 f1stres 8039 f2ndres 8040 fnwelem 8157 soseq 8185 issmo 8389 oawordeulem 8593 naddf 8720 ecopover 8862 unfilem2 9345 dffi2 9464 inficl 9466 fipwuni 9467 fisn 9468 dffi3 9472 cantnfvalf 9706 r111 9816 alephf1 10126 alephiso 10139 dfac5lem4 10167 dfac5lem4OLD 10169 kmlem9 10200 ackbij1lem17 10276 fin1a2lem2 10442 fin1a2lem4 10444 axcc2lem 10477 smobeth 10627 nqereu 10970 addpqf 10985 mulpqf 10987 genpdm 11043 axaddf 11186 axmulf 11187 subf 11511 mulnzcnf 11910 negiso 12249 cnref1o 13028 xaddf 13267 xmulf 13315 ioof 13488 om2uzf1oi 13995 om2uzisoi 13996 wrd2ind 14762 wwlktovf1 14997 reeff1 16157 divalglem9 16439 bitsf1 16484 smupf 16516 gcdf 16550 eucalgf 16621 qredeu 16696 1arith 16966 vdwapf 17011 xpsff1o 17613 catideu 17719 sscres 17868 fpwipodrs 18586 letsr 18639 mgmidmo 18674 frmdplusg 18868 efmndmgm 18899 smndex1mgm 18921 pwmnd 18951 mulgfval 19088 nmznsg 19187 efgmf 19732 efglem 19735 efgred 19767 isabli 19815 brric 20505 xrsmgm 21420 xrs1cmn 21425 xrge0subm 21426 xrsds 21428 cnsubmlem 21433 cnsubrglem 21435 cnsubrglemOLD 21436 nn0srg 21456 rge0srg 21457 pzriprnglem5 21497 pzriprnglem8 21500 rzgrp 21642 fibas 22985 fctop 23012 cctop 23014 iccordt 23223 txuni2 23574 fsubbas 23876 zfbas 23905 ismeti 24336 dscmet 24586 qtopbaslem 24780 tgqioo 24822 xrsxmet 24832 xrsdsre 24833 retopconn 24852 iccconn 24853 divcnOLD 24891 divcn 24893 abscncf 24928 recncf 24929 imcncf 24930 cjcncf 24931 iimulcn 24968 iimulcnOLD 24969 icopnfhmeo 24975 iccpnfhmeo 24977 xrhmeo 24978 cnllycmp 24989 bndth 24991 iundisj2 25585 dyadf 25627 reefiso 26493 recosf1o 26578 cxpcn3 26792 sgmf 27189 2lgslem1b 27437 lrcut 27942 addsf 28016 negscut 28072 negsf1o 28087 subsf 28095 mulscutlem 28158 tgjustf 28482 ercgrg 28526 2wspmdisj 30357 isabloi 30571 smcnlem 30717 cncph 30839 hvsubf 31035 hhip 31197 hhph 31198 helch 31263 hsn0elch 31268 hhssabloilem 31281 hhshsslem2 31288 shscli 31337 shintcli 31349 pjmf1 31736 idunop 31998 0cnop 31999 0cnfn 32000 idcnop 32001 idhmop 32002 0hmop 32003 adj0 32014 lnophsi 32021 lnopunii 32032 lnophmi 32038 nlelshi 32080 riesz4i 32083 cnlnadjlem6 32092 cnlnadjlem9 32095 adjcoi 32120 bra11 32128 pjhmopi 32166 iundisj2f 32604 iundisj2fi 32800 xrstos 33013 xrge0omnd 33089 reofld 33373 xrge0slmod 33377 zringfrac 33583 iistmd 33902 cnre2csqima 33911 mndpluscn 33926 raddcn 33929 xrge0iifiso 33935 xrge0iifmhm 33939 xrge0pluscn 33940 cnzh 33970 rezh 33971 br2base 34272 sxbrsiga 34293 signswmnd 34573 cardpred 35105 nummin 35106 indispconn 35240 cnllysconn 35251 ioosconn 35253 rellysconn 35257 fmlaomn0 35396 gonan0 35398 goaln0 35399 mpomulnzcnf 36301 fneref 36352 dnicn 36494 f1omptsnlem 37338 isbasisrelowl 37360 poimirlem27 37655 mblfinlem1 37665 mblfinlem2 37666 exidu1 37864 rngoideu 37911 isomliN 39241 idlaut 40099 resubf 42416 sn-subf 42463 mzpclall 42743 frmx 42930 frmy 42931 kelac2lem 43081 onsucf1o 43290 ontric3g 43540 clsk1indlem3 44061 wfaxpr 45020 icof 45229 natglobalincr 46897 sprsymrelf1 47488 fmtnof1 47527 prmdvdsfmtnof1 47579 usgrexmpl2trifr 48001 uspgrsprf1 48068 plusfreseq 48085 nnsgrpmgm 48097 nnsgrp 48098 nn0mnd 48100 2zrngamgm 48166 2zrngmmgm 48173 2zrngnmrid 48177 ldepslinc 48431 rrx2xpref1o 48644 rrx2plordisom 48649 rescofuf 48940 |
| Copyright terms: Public domain | W3C validator |