| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rgen2 | Structured version Visualization version GIF version | ||
| Description: Generalization rule for restricted quantification, with two quantifiers. This theorem should be used in place of rgen2a 3345 since it depends on a smaller set of axioms. (Contributed by NM, 30-May-1999.) |
| Ref | Expression |
|---|---|
| rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
| Ref | Expression |
|---|---|
| rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
| 2 | 1 | ralrimiva 3125 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
| 3 | 2 | rgen 3046 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: rgen3 3182 invdisjrab 5094 sosn 5725 isoid 7304 f1owe 7328 epweon 7751 epweonALT 7752 f1stres 7992 f2ndres 7993 fnwelem 8110 soseq 8138 issmo 8317 oawordeulem 8518 naddf 8645 ecopover 8794 unfilem2 9255 dffi2 9374 inficl 9376 fipwuni 9377 fisn 9378 dffi3 9382 cantnfvalf 9618 r111 9728 alephf1 10038 alephiso 10051 dfac5lem4 10079 dfac5lem4OLD 10081 kmlem9 10112 ackbij1lem17 10188 fin1a2lem2 10354 fin1a2lem4 10356 axcc2lem 10389 smobeth 10539 nqereu 10882 addpqf 10897 mulpqf 10899 genpdm 10955 axaddf 11098 axmulf 11099 subf 11423 mulnzcnf 11824 negiso 12163 cnref1o 12944 xaddf 13184 xmulf 13232 ioof 13408 om2uzf1oi 13918 om2uzisoi 13919 wrd2ind 14688 wwlktovf1 14923 reeff1 16088 divalglem9 16371 bitsf1 16416 smupf 16448 gcdf 16482 eucalgf 16553 qredeu 16628 1arith 16898 vdwapf 16943 xpsff1o 17530 catideu 17636 sscres 17785 fpwipodrs 18499 letsr 18552 mgmidmo 18587 frmdplusg 18781 efmndmgm 18812 smndex1mgm 18834 pwmnd 18864 mulgfval 19001 nmznsg 19100 efgmf 19643 efglem 19646 efgred 19678 isabli 19726 brric 20413 xrsmgm 21318 xrs1cmn 21323 xrge0subm 21324 xrsds 21326 cnsubmlem 21331 cnsubrglem 21333 cnsubrglemOLD 21334 nn0srg 21354 rge0srg 21355 pzriprnglem5 21395 pzriprnglem8 21398 rzgrp 21532 fibas 22864 fctop 22891 cctop 22893 iccordt 23101 txuni2 23452 fsubbas 23754 zfbas 23783 ismeti 24213 dscmet 24460 qtopbaslem 24646 tgqioo 24688 xrsxmet 24698 xrsdsre 24699 retopconn 24718 iccconn 24719 divcnOLD 24757 divcn 24759 abscncf 24794 recncf 24795 imcncf 24796 cjcncf 24797 iimulcn 24834 iimulcnOLD 24835 icopnfhmeo 24841 iccpnfhmeo 24843 xrhmeo 24844 cnllycmp 24855 bndth 24857 iundisj2 25450 dyadf 25492 reefiso 26358 recosf1o 26444 cxpcn3 26658 sgmf 27055 2lgslem1b 27303 lrcut 27815 addsf 27889 negscut 27945 negsf1o 27960 subsf 27968 mulscutlem 28034 onsiso 28169 bdayn0sf1o 28259 tgjustf 28400 ercgrg 28444 2wspmdisj 30266 isabloi 30480 smcnlem 30626 cncph 30748 hvsubf 30944 hhip 31106 hhph 31107 helch 31172 hsn0elch 31177 hhssabloilem 31190 hhshsslem2 31197 shscli 31246 shintcli 31258 pjmf1 31645 idunop 31907 0cnop 31908 0cnfn 31909 idcnop 31910 idhmop 31911 0hmop 31912 adj0 31923 lnophsi 31930 lnopunii 31941 lnophmi 31947 nlelshi 31989 riesz4i 31992 cnlnadjlem6 32001 cnlnadjlem9 32004 adjcoi 32029 bra11 32037 pjhmopi 32075 iundisj2f 32519 iundisj2fi 32720 xrstos 32948 xrge0omnd 33025 reofld 33315 xrge0slmod 33319 zringfrac 33525 iistmd 33892 cnre2csqima 33901 mndpluscn 33916 raddcn 33919 xrge0iifiso 33925 xrge0iifmhm 33929 xrge0pluscn 33930 cnzh 33958 rezh 33959 br2base 34260 sxbrsiga 34281 signswmnd 34548 cardpred 35080 nummin 35081 indispconn 35221 cnllysconn 35232 ioosconn 35234 rellysconn 35238 fmlaomn0 35377 gonan0 35379 goaln0 35380 mpomulnzcnf 36287 fneref 36338 dnicn 36480 f1omptsnlem 37324 isbasisrelowl 37346 poimirlem27 37641 mblfinlem1 37651 mblfinlem2 37652 exidu1 37850 rngoideu 37897 isomliN 39232 idlaut 40090 resubf 42369 sn-subf 42417 mzpclall 42715 frmx 42902 frmy 42903 kelac2lem 43053 onsucf1o 43261 ontric3g 43511 clsk1indlem3 44032 wfaxpr 44988 icof 45213 natglobalincr 46875 sprsymrelf1 47497 fmtnof1 47536 prmdvdsfmtnof1 47588 usgrexmpl2trifr 48028 uspgrsprf1 48135 plusfreseq 48152 nnsgrpmgm 48164 nnsgrp 48165 nn0mnd 48167 2zrngamgm 48233 2zrngmmgm 48240 2zrngnmrid 48244 ldepslinc 48498 rrx2xpref1o 48707 rrx2plordisom 48712 rescofuf 49082 oppff1 49137 |
| Copyright terms: Public domain | W3C validator |