![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rgen2 | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification, with two quantifiers. This theorem should be used in place of rgen2a 3367 since it depends on a smaller set of axioms. (Contributed by NM, 30-May-1999.) |
Ref | Expression |
---|---|
rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
Ref | Expression |
---|---|
rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
2 | 1 | ralrimiva 3146 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
3 | 2 | rgen 3063 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ral 3062 |
This theorem is referenced by: rgen3 3202 invdisjrabw 5133 invdisjrab 5134 sosn 5762 isoid 7325 f1owe 7349 epweon 7761 epweonALT 7762 f1stres 7998 f2ndres 7999 fnwelem 8116 soseq 8144 issmo 8347 oawordeulem 8553 naddf 8679 ecopover 8814 unfilem2 9310 dffi2 9417 inficl 9419 fipwuni 9420 fisn 9421 dffi3 9425 cantnfvalf 9659 r111 9769 alephf1 10079 alephiso 10092 dfac5lem4 10120 kmlem9 10152 ackbij1lem17 10230 fin1a2lem2 10395 fin1a2lem4 10397 axcc2lem 10430 smobeth 10580 nqereu 10923 addpqf 10938 mulpqf 10940 genpdm 10996 axaddf 11139 axmulf 11140 subf 11461 mulnzcnopr 11859 negiso 12193 cnref1o 12968 xaddf 13202 xmulf 13250 ioof 13423 om2uzf1oi 13917 om2uzisoi 13918 wrd2ind 14672 wwlktovf1 14907 reeff1 16062 divalglem9 16343 bitsf1 16386 smupf 16418 gcdf 16452 eucalgf 16519 qredeu 16594 1arith 16859 vdwapf 16904 xpsff1o 17512 catideu 17618 sscres 17769 fpwipodrs 18492 letsr 18545 mgmidmo 18578 frmdplusg 18734 efmndmgm 18765 smndex1mgm 18787 pwmnd 18817 mulgfval 18951 nmznsg 19047 efgmf 19580 efglem 19583 efgred 19615 isabli 19663 brric 20282 xrsmgm 20979 xrs1cmn 20984 xrge0subm 20985 xrsds 20987 cnsubmlem 20992 cnsubrglem 20994 nn0srg 21014 rge0srg 21015 rzgrp 21175 fibas 22479 fctop 22506 cctop 22508 iccordt 22717 txuni2 23068 fsubbas 23370 zfbas 23399 ismeti 23830 dscmet 24080 qtopbaslem 24274 tgqioo 24315 xrsxmet 24324 xrsdsre 24325 retopconn 24344 iccconn 24345 divcn 24383 abscncf 24416 recncf 24417 imcncf 24418 cjcncf 24419 iimulcn 24453 icopnfhmeo 24458 iccpnfhmeo 24460 xrhmeo 24461 cnllycmp 24471 bndth 24473 iundisj2 25065 dyadf 25107 reefiso 25959 recosf1o 26043 cxpcn3 26253 sgmf 26646 2lgslem1b 26892 lrcut 27394 addsf 27463 negscut 27510 negsf1o 27525 mulscutlem 27584 tgjustf 27721 ercgrg 27765 2wspmdisj 29587 isabloi 29799 smcnlem 29945 cncph 30067 hvsubf 30263 hhip 30425 hhph 30426 helch 30491 hsn0elch 30496 hhssabloilem 30509 hhshsslem2 30516 shscli 30565 shintcli 30577 pjmf1 30964 idunop 31226 0cnop 31227 0cnfn 31228 idcnop 31229 idhmop 31230 0hmop 31231 adj0 31242 lnophsi 31249 lnopunii 31260 lnophmi 31266 nlelshi 31308 riesz4i 31311 cnlnadjlem6 31320 cnlnadjlem9 31323 adjcoi 31348 bra11 31356 pjhmopi 31394 iundisj2f 31816 iundisj2fi 32003 xrstos 32175 xrge0omnd 32224 reofld 32454 xrge0slmod 32458 iistmd 32877 cnre2csqima 32886 mndpluscn 32901 raddcn 32904 xrge0iifiso 32910 xrge0iifmhm 32914 xrge0pluscn 32915 cnzh 32945 rezh 32946 br2base 33263 sxbrsiga 33284 signswmnd 33563 cardpred 34088 nummin 34089 indispconn 34220 cnllysconn 34231 ioosconn 34233 rellysconn 34237 fmlaomn0 34376 gonan0 34378 goaln0 34379 gg-divcn 35158 gg-iimulcn 35164 fneref 35230 dnicn 35363 f1omptsnlem 36212 isbasisrelowl 36234 poimirlem27 36510 mblfinlem1 36520 mblfinlem2 36521 exidu1 36719 rngoideu 36766 isomliN 38104 idlaut 38962 resubf 41255 sn-subf 41302 mzpclall 41455 frmx 41642 frmy 41643 kelac2lem 41796 onsucf1o 42012 ontric3g 42263 clsk1indlem3 42784 icof 43908 natglobalincr 45581 sprsymrelf1 46154 fmtnof1 46193 prmdvdsfmtnof1 46245 uspgrsprf1 46515 plusfreseq 46532 nnsgrpmgm 46576 nnsgrp 46577 nn0mnd 46579 pzriprnglem5 46799 pzriprnglem8 46802 2zrngamgm 46827 2zrngmmgm 46834 2zrngnmrid 46838 ldepslinc 47180 rrx2xpref1o 47394 rrx2plordisom 47399 |
Copyright terms: Public domain | W3C validator |