![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rgen2 | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification, with two quantifiers. This theorem should be used in place of rgen2a 3369 since it depends on a smaller set of axioms. (Contributed by NM, 30-May-1999.) |
Ref | Expression |
---|---|
rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
Ref | Expression |
---|---|
rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
2 | 1 | ralrimiva 3144 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
3 | 2 | rgen 3061 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3060 |
This theorem is referenced by: rgen3 3202 invdisjrab 5135 sosn 5775 isoid 7349 f1owe 7373 epweon 7794 epweonALT 7795 f1stres 8037 f2ndres 8038 fnwelem 8155 soseq 8183 issmo 8387 oawordeulem 8591 naddf 8718 ecopover 8860 unfilem2 9342 dffi2 9461 inficl 9463 fipwuni 9464 fisn 9465 dffi3 9469 cantnfvalf 9703 r111 9813 alephf1 10123 alephiso 10136 dfac5lem4 10164 dfac5lem4OLD 10166 kmlem9 10197 ackbij1lem17 10273 fin1a2lem2 10439 fin1a2lem4 10441 axcc2lem 10474 smobeth 10624 nqereu 10967 addpqf 10982 mulpqf 10984 genpdm 11040 axaddf 11183 axmulf 11184 subf 11508 mulnzcnf 11907 negiso 12246 cnref1o 13025 xaddf 13263 xmulf 13311 ioof 13484 om2uzf1oi 13991 om2uzisoi 13992 wrd2ind 14758 wwlktovf1 14993 reeff1 16153 divalglem9 16435 bitsf1 16480 smupf 16512 gcdf 16546 eucalgf 16617 qredeu 16692 1arith 16961 vdwapf 17006 xpsff1o 17614 catideu 17720 sscres 17871 fpwipodrs 18598 letsr 18651 mgmidmo 18686 frmdplusg 18880 efmndmgm 18911 smndex1mgm 18933 pwmnd 18963 mulgfval 19100 nmznsg 19199 efgmf 19746 efglem 19749 efgred 19781 isabli 19829 brric 20521 xrsmgm 21437 xrs1cmn 21442 xrge0subm 21443 xrsds 21445 cnsubmlem 21450 cnsubrglem 21452 cnsubrglemOLD 21453 nn0srg 21473 rge0srg 21474 pzriprnglem5 21514 pzriprnglem8 21517 rzgrp 21659 fibas 23000 fctop 23027 cctop 23029 iccordt 23238 txuni2 23589 fsubbas 23891 zfbas 23920 ismeti 24351 dscmet 24601 qtopbaslem 24795 tgqioo 24836 xrsxmet 24845 xrsdsre 24846 retopconn 24865 iccconn 24866 divcnOLD 24904 divcn 24906 abscncf 24941 recncf 24942 imcncf 24943 cjcncf 24944 iimulcn 24981 iimulcnOLD 24982 icopnfhmeo 24988 iccpnfhmeo 24990 xrhmeo 24991 cnllycmp 25002 bndth 25004 iundisj2 25598 dyadf 25640 reefiso 26507 recosf1o 26592 cxpcn3 26806 sgmf 27203 2lgslem1b 27451 lrcut 27956 addsf 28030 negscut 28086 negsf1o 28101 subsf 28109 mulscutlem 28172 tgjustf 28496 ercgrg 28540 2wspmdisj 30366 isabloi 30580 smcnlem 30726 cncph 30848 hvsubf 31044 hhip 31206 hhph 31207 helch 31272 hsn0elch 31277 hhssabloilem 31290 hhshsslem2 31297 shscli 31346 shintcli 31358 pjmf1 31745 idunop 32007 0cnop 32008 0cnfn 32009 idcnop 32010 idhmop 32011 0hmop 32012 adj0 32023 lnophsi 32030 lnopunii 32041 lnophmi 32047 nlelshi 32089 riesz4i 32092 cnlnadjlem6 32101 cnlnadjlem9 32104 adjcoi 32129 bra11 32137 pjhmopi 32175 iundisj2f 32610 iundisj2fi 32805 xrstos 32995 xrge0omnd 33071 reofld 33352 xrge0slmod 33356 zringfrac 33562 iistmd 33863 cnre2csqima 33872 mndpluscn 33887 raddcn 33890 xrge0iifiso 33896 xrge0iifmhm 33900 xrge0pluscn 33901 cnzh 33931 rezh 33932 br2base 34251 sxbrsiga 34272 signswmnd 34551 cardpred 35083 nummin 35084 indispconn 35219 cnllysconn 35230 ioosconn 35232 rellysconn 35236 fmlaomn0 35375 gonan0 35377 goaln0 35378 mpomulnzcnf 36282 fneref 36333 dnicn 36475 f1omptsnlem 37319 isbasisrelowl 37341 poimirlem27 37634 mblfinlem1 37644 mblfinlem2 37645 exidu1 37843 rngoideu 37890 isomliN 39221 idlaut 40079 resubf 42388 sn-subf 42435 mzpclall 42715 frmx 42902 frmy 42903 kelac2lem 43053 onsucf1o 43262 ontric3g 43512 clsk1indlem3 44033 wfaxpr 44952 icof 45162 natglobalincr 46831 sprsymrelf1 47421 fmtnof1 47460 prmdvdsfmtnof1 47512 usgrexmpl2trifr 47932 uspgrsprf1 47991 plusfreseq 48008 nnsgrpmgm 48020 nnsgrp 48021 nn0mnd 48023 2zrngamgm 48089 2zrngmmgm 48096 2zrngnmrid 48100 ldepslinc 48355 rrx2xpref1o 48568 rrx2plordisom 48573 |
Copyright terms: Public domain | W3C validator |