Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rgen2 | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification, with two quantifiers. This theorem should be used in place of rgen2a 3159 since it depends on a smaller set of axioms. (Contributed by NM, 30-May-1999.) |
Ref | Expression |
---|---|
rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
Ref | Expression |
---|---|
rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
2 | 1 | ralrimiva 3104 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
3 | 2 | rgen 3075 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2107 ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ral 3070 |
This theorem is referenced by: rgen3 3122 invdisjrabw 5060 invdisjrab 5061 sosn 5674 isoid 7209 f1owe 7233 epweon 7634 epweonOLD 7635 f1stres 7864 f2ndres 7865 fnwelem 7981 issmo 8188 oawordeulem 8394 ecopover 8619 unfilem2 9088 dffi2 9191 inficl 9193 fipwuni 9194 fisn 9195 dffi3 9199 cantnfvalf 9432 r111 9542 alephf1 9850 alephiso 9863 dfac5lem4 9891 kmlem9 9923 ackbij1lem17 10001 fin1a2lem2 10166 fin1a2lem4 10168 axcc2lem 10201 smobeth 10351 nqereu 10694 addpqf 10709 mulpqf 10711 genpdm 10767 axaddf 10910 axmulf 10911 subf 11232 mulnzcnopr 11630 negiso 11964 cnref1o 12734 xaddf 12967 xmulf 13015 ioof 13188 om2uzf1oi 13682 om2uzisoi 13683 wrd2ind 14445 wwlktovf1 14681 reeff1 15838 divalglem9 16119 bitsf1 16162 smupf 16194 gcdf 16228 eucalgf 16297 qredeu 16372 1arith 16637 vdwapf 16682 xpsff1o 17287 catideu 17393 sscres 17544 fpwipodrs 18267 letsr 18320 mgmidmo 18353 frmdplusg 18502 efmndmgm 18533 smndex1mgm 18555 pwmnd 18585 mulgfval 18711 nmznsg 18805 efgmf 19328 efglem 19331 efgred 19363 isabli 19410 brric 19997 xrsmgm 20642 xrs1cmn 20647 xrge0subm 20648 xrsds 20650 cnsubmlem 20655 cnsubrglem 20657 nn0srg 20677 rge0srg 20678 rzgrp 20837 fibas 22136 fctop 22163 cctop 22165 iccordt 22374 txuni2 22725 fsubbas 23027 zfbas 23056 ismeti 23487 dscmet 23737 qtopbaslem 23931 tgqioo 23972 xrsxmet 23981 xrsdsre 23982 retopconn 24001 iccconn 24002 divcn 24040 abscncf 24073 recncf 24074 imcncf 24075 cjcncf 24076 iimulcn 24110 icopnfhmeo 24115 iccpnfhmeo 24117 xrhmeo 24118 cnllycmp 24128 bndth 24130 iundisj2 24722 dyadf 24764 reefiso 25616 recosf1o 25700 cxpcn3 25910 sgmf 26303 2lgslem1b 26549 tgjustf 26843 ercgrg 26887 2wspmdisj 28710 isabloi 28922 smcnlem 29068 cncph 29190 hvsubf 29386 hhip 29548 hhph 29549 helch 29614 hsn0elch 29619 hhssabloilem 29632 hhshsslem2 29639 shscli 29688 shintcli 29700 pjmf1 30087 idunop 30349 0cnop 30350 0cnfn 30351 idcnop 30352 idhmop 30353 0hmop 30354 adj0 30365 lnophsi 30372 lnopunii 30383 lnophmi 30389 nlelshi 30431 riesz4i 30434 cnlnadjlem6 30443 cnlnadjlem9 30446 adjcoi 30471 bra11 30479 pjhmopi 30517 iundisj2f 30938 iundisj2fi 31127 xrstos 31297 xrge0omnd 31346 reofld 31553 xrge0slmod 31557 iistmd 31861 cnre2csqima 31870 mndpluscn 31885 raddcn 31888 xrge0iifiso 31894 xrge0iifmhm 31898 xrge0pluscn 31899 cnzh 31929 rezh 31930 br2base 32245 sxbrsiga 32266 signswmnd 32545 cardpred 33071 nummin 33072 indispconn 33205 cnllysconn 33216 ioosconn 33218 rellysconn 33222 fmlaomn0 33361 gonan0 33363 goaln0 33364 soseq 33812 lrcut 34092 fneref 34548 dnicn 34681 f1omptsnlem 35516 isbasisrelowl 35538 poimirlem27 35813 mblfinlem1 35823 mblfinlem2 35824 exidu1 36023 rngoideu 36070 isomliN 37260 idlaut 38117 resubf 40371 sn-subf 40417 mzpclall 40556 frmx 40742 frmy 40743 kelac2lem 40896 ontric3g 41136 clsk1indlem3 41660 icof 42766 sprsymrelf1 44959 fmtnof1 44998 prmdvdsfmtnof1 45050 uspgrsprf1 45320 plusfreseq 45337 nnsgrpmgm 45381 nnsgrp 45382 nn0mnd 45384 2zrngamgm 45508 2zrngmmgm 45515 2zrngnmrid 45519 ldepslinc 45861 rrx2xpref1o 46075 rrx2plordisom 46080 natglobalincr 46523 |
Copyright terms: Public domain | W3C validator |