![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rgen2 | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification, with two quantifiers. This theorem should be used in place of rgen2a 3365 since it depends on a smaller set of axioms. (Contributed by NM, 30-May-1999.) |
Ref | Expression |
---|---|
rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
Ref | Expression |
---|---|
rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
2 | 1 | ralrimiva 3143 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
3 | 2 | rgen 3060 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ral 3059 |
This theorem is referenced by: rgen3 3200 invdisjrabw 5137 invdisjrab 5138 sosn 5768 isoid 7343 f1owe 7367 epweon 7783 epweonALT 7784 f1stres 8023 f2ndres 8024 fnwelem 8142 soseq 8170 issmo 8375 oawordeulem 8581 naddf 8708 ecopover 8846 unfilem2 9342 dffi2 9454 inficl 9456 fipwuni 9457 fisn 9458 dffi3 9462 cantnfvalf 9696 r111 9806 alephf1 10116 alephiso 10129 dfac5lem4 10157 kmlem9 10189 ackbij1lem17 10267 fin1a2lem2 10432 fin1a2lem4 10434 axcc2lem 10467 smobeth 10617 nqereu 10960 addpqf 10975 mulpqf 10977 genpdm 11033 axaddf 11176 axmulf 11177 subf 11500 mulnzcnf 11898 negiso 12232 cnref1o 13007 xaddf 13243 xmulf 13291 ioof 13464 om2uzf1oi 13958 om2uzisoi 13959 wrd2ind 14713 wwlktovf1 14948 reeff1 16104 divalglem9 16385 bitsf1 16428 smupf 16460 gcdf 16494 eucalgf 16561 qredeu 16636 1arith 16903 vdwapf 16948 xpsff1o 17556 catideu 17662 sscres 17813 fpwipodrs 18539 letsr 18592 mgmidmo 18627 frmdplusg 18813 efmndmgm 18844 smndex1mgm 18866 pwmnd 18896 mulgfval 19032 nmznsg 19130 efgmf 19675 efglem 19678 efgred 19710 isabli 19758 brric 20450 xrsmgm 21341 xrs1cmn 21346 xrge0subm 21347 xrsds 21349 cnsubmlem 21354 cnsubrglem 21356 cnsubrglemOLD 21357 nn0srg 21377 rge0srg 21378 pzriprnglem5 21418 pzriprnglem8 21421 rzgrp 21562 fibas 22900 fctop 22927 cctop 22929 iccordt 23138 txuni2 23489 fsubbas 23791 zfbas 23820 ismeti 24251 dscmet 24501 qtopbaslem 24695 tgqioo 24736 xrsxmet 24745 xrsdsre 24746 retopconn 24765 iccconn 24766 divcnOLD 24804 divcn 24806 abscncf 24841 recncf 24842 imcncf 24843 cjcncf 24844 iimulcn 24881 iimulcnOLD 24882 icopnfhmeo 24888 iccpnfhmeo 24890 xrhmeo 24891 cnllycmp 24902 bndth 24904 iundisj2 25498 dyadf 25540 reefiso 26405 recosf1o 26489 cxpcn3 26703 sgmf 27097 2lgslem1b 27345 lrcut 27849 addsf 27919 negscut 27971 negsf1o 27986 mulscutlem 28051 tgjustf 28297 ercgrg 28341 2wspmdisj 30167 isabloi 30381 smcnlem 30527 cncph 30649 hvsubf 30845 hhip 31007 hhph 31008 helch 31073 hsn0elch 31078 hhssabloilem 31091 hhshsslem2 31098 shscli 31147 shintcli 31159 pjmf1 31546 idunop 31808 0cnop 31809 0cnfn 31810 idcnop 31811 idhmop 31812 0hmop 31813 adj0 31824 lnophsi 31831 lnopunii 31842 lnophmi 31848 nlelshi 31890 riesz4i 31893 cnlnadjlem6 31902 cnlnadjlem9 31905 adjcoi 31930 bra11 31938 pjhmopi 31976 iundisj2f 32401 iundisj2fi 32586 xrstos 32758 xrge0omnd 32812 reofld 33080 xrge0slmod 33084 zringfrac 33277 iistmd 33536 cnre2csqima 33545 mndpluscn 33560 raddcn 33563 xrge0iifiso 33569 xrge0iifmhm 33573 xrge0pluscn 33574 cnzh 33604 rezh 33605 br2base 33922 sxbrsiga 33943 signswmnd 34222 cardpred 34746 nummin 34747 indispconn 34877 cnllysconn 34888 ioosconn 34890 rellysconn 34894 fmlaomn0 35033 gonan0 35035 goaln0 35036 mpomulnzcnf 35816 fneref 35867 dnicn 36000 f1omptsnlem 36848 isbasisrelowl 36870 poimirlem27 37153 mblfinlem1 37163 mblfinlem2 37164 exidu1 37362 rngoideu 37409 isomliN 38743 idlaut 39601 resubf 41967 sn-subf 42014 mzpclall 42178 frmx 42365 frmy 42366 kelac2lem 42519 onsucf1o 42732 ontric3g 42983 clsk1indlem3 43504 icof 44622 natglobalincr 46292 sprsymrelf1 46865 fmtnof1 46904 prmdvdsfmtnof1 46956 uspgrsprf1 47287 plusfreseq 47304 nnsgrpmgm 47316 nnsgrp 47317 nn0mnd 47319 2zrngamgm 47385 2zrngmmgm 47392 2zrngnmrid 47396 ldepslinc 47655 rrx2xpref1o 47869 rrx2plordisom 47874 |
Copyright terms: Public domain | W3C validator |