![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabelpw | Structured version Visualization version GIF version |
Description: A restricted class abstraction is an element of the power set of its restricting set. (Contributed by AV, 9-Oct-2023.) |
Ref | Expression |
---|---|
rabelpw | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4103 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
2 | elpw2g 5351 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝑥 ∈ 𝐴 ∣ 𝜑} ∈ 𝒫 𝐴 ↔ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴)) | |
3 | 1, 2 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 {crab 3443 ⊆ wss 3976 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-pw 4624 |
This theorem is referenced by: rabexg 5355 pwnss 5370 satfvsuclem2 35328 |
Copyright terms: Public domain | W3C validator |