MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabelpw Structured version   Visualization version   GIF version

Theorem rabelpw 5354
Description: A restricted class abstraction is an element of the power set of its restricting set. (Contributed by AV, 9-Oct-2023.)
Assertion
Ref Expression
rabelpw (𝐴𝑉 → {𝑥𝐴𝜑} ∈ 𝒫 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem rabelpw
StepHypRef Expression
1 ssrab2 4103 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
2 elpw2g 5351 . 2 (𝐴𝑉 → ({𝑥𝐴𝜑} ∈ 𝒫 𝐴 ↔ {𝑥𝐴𝜑} ⊆ 𝐴))
31, 2mpbiri 258 1 (𝐴𝑉 → {𝑥𝐴𝜑} ∈ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  {crab 3443  wss 3976  𝒫 cpw 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993  df-pw 4624
This theorem is referenced by:  rabexg  5355  pwnss  5370  satfvsuclem2  35328
  Copyright terms: Public domain W3C validator