MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabelpw Structured version   Visualization version   GIF version

Theorem rabelpw 5275
Description: A restricted class abstraction is an element of the power set of its restricting set. (Contributed by AV, 9-Oct-2023.)
Assertion
Ref Expression
rabelpw (𝐴𝑉 → {𝑥𝐴𝜑} ∈ 𝒫 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem rabelpw
StepHypRef Expression
1 ssrab2 4013 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
2 elpw2g 5268 . 2 (𝐴𝑉 → ({𝑥𝐴𝜑} ∈ 𝒫 𝐴 ↔ {𝑥𝐴𝜑} ⊆ 𝐴))
31, 2mpbiri 257 1 (𝐴𝑉 → {𝑥𝐴𝜑} ∈ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  {crab 3068  wss 3887  𝒫 cpw 4533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-pw 4535
This theorem is referenced by:  satfvsuclem2  33322
  Copyright terms: Public domain W3C validator