MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difelpw Structured version   Visualization version   GIF version

Theorem difelpw 5269
Description: A difference is an element of the power set of its minuend. (Contributed by AV, 9-Oct-2023.)
Assertion
Ref Expression
difelpw (𝐴𝑉 → (𝐴𝐵) ∈ 𝒫 𝐴)

Proof of Theorem difelpw
StepHypRef Expression
1 difss 4062 . 2 (𝐴𝐵) ⊆ 𝐴
2 elpw2g 5263 . 2 (𝐴𝑉 → ((𝐴𝐵) ∈ 𝒫 𝐴 ↔ (𝐴𝐵) ⊆ 𝐴))
31, 2mpbiri 257 1 (𝐴𝑉 → (𝐴𝐵) ∈ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cdif 3880  wss 3883  𝒫 cpw 4530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-pw 4532
This theorem is referenced by:  satfvsuclem2  33222  clsk3nimkb  41539
  Copyright terms: Public domain W3C validator