Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difelpw | Structured version Visualization version GIF version |
Description: A difference is an element of the power set of its minuend. (Contributed by AV, 9-Oct-2023.) |
Ref | Expression |
---|---|
difelpw | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4071 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
2 | elpw2g 5272 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∖ 𝐵) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ 𝐵) ⊆ 𝐴)) | |
3 | 1, 2 | mpbiri 257 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 ∖ cdif 3889 ⊆ wss 3892 𝒫 cpw 4539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-in 3899 df-ss 3909 df-pw 4541 |
This theorem is referenced by: satfvsuclem2 33318 clsk3nimkb 41620 |
Copyright terms: Public domain | W3C validator |