MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difelpw Structured version   Visualization version   GIF version

Theorem difelpw 5278
Description: A difference is an element of the power set of its minuend. (Contributed by AV, 9-Oct-2023.)
Assertion
Ref Expression
difelpw (𝐴𝑉 → (𝐴𝐵) ∈ 𝒫 𝐴)

Proof of Theorem difelpw
StepHypRef Expression
1 difss 4071 . 2 (𝐴𝐵) ⊆ 𝐴
2 elpw2g 5272 . 2 (𝐴𝑉 → ((𝐴𝐵) ∈ 𝒫 𝐴 ↔ (𝐴𝐵) ⊆ 𝐴))
31, 2mpbiri 257 1 (𝐴𝑉 → (𝐴𝐵) ∈ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  cdif 3889  wss 3892  𝒫 cpw 4539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711  ax-sep 5227
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-rab 3075  df-v 3433  df-dif 3895  df-in 3899  df-ss 3909  df-pw 4541
This theorem is referenced by:  satfvsuclem2  33318  clsk3nimkb  41620
  Copyright terms: Public domain W3C validator