MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difelpw Structured version   Visualization version   GIF version

Theorem difelpw 5292
Description: A difference is an element of the power set of its minuend. (Contributed by AV, 9-Oct-2023.)
Assertion
Ref Expression
difelpw (𝐴𝑉 → (𝐴𝐵) ∈ 𝒫 𝐴)

Proof of Theorem difelpw
StepHypRef Expression
1 difss 4086 . 2 (𝐴𝐵) ⊆ 𝐴
2 elpw2g 5271 . 2 (𝐴𝑉 → ((𝐴𝐵) ∈ 𝒫 𝐴 ↔ (𝐴𝐵) ⊆ 𝐴))
31, 2mpbiri 258 1 (𝐴𝑉 → (𝐴𝐵) ∈ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cdif 3899  wss 3902  𝒫 cpw 4550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-in 3909  df-ss 3919  df-pw 4552
This theorem is referenced by:  satfvsuclem2  35402  clsk3nimkb  44079
  Copyright terms: Public domain W3C validator