MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difelpw Structured version   Visualization version   GIF version

Theorem difelpw 5312
Description: A difference is an element of the power set of its minuend. (Contributed by AV, 9-Oct-2023.)
Assertion
Ref Expression
difelpw (𝐴𝑉 → (𝐴𝐵) ∈ 𝒫 𝐴)

Proof of Theorem difelpw
StepHypRef Expression
1 difss 4102 . 2 (𝐴𝐵) ⊆ 𝐴
2 elpw2g 5291 . 2 (𝐴𝑉 → ((𝐴𝐵) ∈ 𝒫 𝐴 ↔ (𝐴𝐵) ⊆ 𝐴))
31, 2mpbiri 258 1 (𝐴𝑉 → (𝐴𝐵) ∈ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cdif 3914  wss 3917  𝒫 cpw 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-in 3924  df-ss 3934  df-pw 4568
This theorem is referenced by:  satfvsuclem2  35354  clsk3nimkb  44036
  Copyright terms: Public domain W3C validator