| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difelpw | Structured version Visualization version GIF version | ||
| Description: A difference is an element of the power set of its minuend. (Contributed by AV, 9-Oct-2023.) |
| Ref | Expression |
|---|---|
| difelpw | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4102 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
| 2 | elpw2g 5291 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∖ 𝐵) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ 𝐵) ⊆ 𝐴)) | |
| 3 | 1, 2 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∖ cdif 3914 ⊆ wss 3917 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-in 3924 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: satfvsuclem2 35354 clsk3nimkb 44036 |
| Copyright terms: Public domain | W3C validator |