![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difelpw | Structured version Visualization version GIF version |
Description: A difference is an element of the power set of its minuend. (Contributed by AV, 9-Oct-2023.) |
Ref | Expression |
---|---|
difelpw | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4131 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
2 | elpw2g 5351 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∖ 𝐵) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ 𝐵) ⊆ 𝐴)) | |
3 | 1, 2 | mpbiri 257 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ∖ cdif 3944 ⊆ wss 3947 𝒫 cpw 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5304 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-dif 3950 df-in 3954 df-ss 3964 df-pw 4609 |
This theorem is referenced by: satfvsuclem2 35188 clsk3nimkb 43707 |
Copyright terms: Public domain | W3C validator |