|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > difelpw | Structured version Visualization version GIF version | ||
| Description: A difference is an element of the power set of its minuend. (Contributed by AV, 9-Oct-2023.) | 
| Ref | Expression | 
|---|---|
| difelpw | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | difss 4136 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
| 2 | elpw2g 5333 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∖ 𝐵) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ 𝐵) ⊆ 𝐴)) | |
| 3 | 1, 2 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 2108 ∖ cdif 3948 ⊆ wss 3951 𝒫 cpw 4600 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-in 3958 df-ss 3968 df-pw 4602 | 
| This theorem is referenced by: satfvsuclem2 35365 clsk3nimkb 44053 | 
| Copyright terms: Public domain | W3C validator |