![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difelpw | Structured version Visualization version GIF version |
Description: A difference is an element of the power set of its minuend. (Contributed by AV, 9-Oct-2023.) |
Ref | Expression |
---|---|
difelpw | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4123 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
2 | elpw2g 5334 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∖ 𝐵) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ 𝐵) ⊆ 𝐴)) | |
3 | 1, 2 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ∖ cdif 3937 ⊆ wss 3940 𝒫 cpw 4594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3943 df-in 3947 df-ss 3957 df-pw 4596 |
This theorem is referenced by: satfvsuclem2 34806 clsk3nimkb 43246 |
Copyright terms: Public domain | W3C validator |