| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqcOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of rabeqc 3424 as of 15-Jan-2025. (Contributed by AV, 20-Apr-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rabeqcOLD.1 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Ref | Expression |
|---|---|
| rabeqcOLD | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3412 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | eqabcb 2871 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴 ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 ∈ 𝐴)) | |
| 3 | rabeqcOLD.1 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
| 4 | 3 | pm4.71i 559 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 5 | 4 | bicomi 224 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 ∈ 𝐴) |
| 6 | 2, 5 | mpgbir 1799 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴 |
| 7 | 1, 6 | eqtri 2753 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 {crab 3411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |