![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeqcOLD | Structured version Visualization version GIF version |
Description: Obsolete version of rabeqc 3436 as of 15-Jan-2025. (Contributed by AV, 20-Apr-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rabeqcOLD.1 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Ref | Expression |
---|---|
rabeqcOLD | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3425 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | eqabcb 2867 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴 ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 ∈ 𝐴)) | |
3 | rabeqcOLD.1 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
4 | 3 | pm4.71i 559 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
5 | 4 | bicomi 223 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 ∈ 𝐴) |
6 | 2, 5 | mpgbir 1793 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴 |
7 | 1, 6 | eqtri 2752 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {cab 2701 {crab 3424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |