MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqcOLD Structured version   Visualization version   GIF version

Theorem rabeqcOLD 3673
Description: Obsolete version of rabeqc 3436 as of 15-Jan-2025. (Contributed by AV, 20-Apr-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
rabeqcOLD.1 (𝑥𝐴𝜑)
Assertion
Ref Expression
rabeqcOLD {𝑥𝐴𝜑} = 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabeqcOLD
StepHypRef Expression
1 df-rab 3425 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 eqabcb 2867 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} = 𝐴 ↔ ∀𝑥((𝑥𝐴𝜑) ↔ 𝑥𝐴))
3 rabeqcOLD.1 . . . . 5 (𝑥𝐴𝜑)
43pm4.71i 559 . . . 4 (𝑥𝐴 ↔ (𝑥𝐴𝜑))
54bicomi 223 . . 3 ((𝑥𝐴𝜑) ↔ 𝑥𝐴)
62, 5mpgbir 1793 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = 𝐴
71, 6eqtri 2752 1 {𝑥𝐴𝜑} = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  {cab 2701  {crab 3424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator