Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabtru Structured version   Visualization version   GIF version

Theorem rabtru 3680
 Description: Abstract builder using the constant wff ⊤ (Contributed by Thierry Arnoux, 4-May-2020.)
Hypothesis
Ref Expression
rabtru.1 𝑥𝐴
Assertion
Ref Expression
rabtru {𝑥𝐴 ∣ ⊤} = 𝐴

Proof of Theorem rabtru
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tru 1534 . . 3
2 nfcv 2981 . . . 4 𝑥𝑦
3 rabtru.1 . . . 4 𝑥𝐴
4 nftru 1798 . . . 4 𝑥
5 biidd 263 . . . 4 (𝑥 = 𝑦 → (⊤ ↔ ⊤))
62, 3, 4, 5elrabf 3679 . . 3 (𝑦 ∈ {𝑥𝐴 ∣ ⊤} ↔ (𝑦𝐴 ∧ ⊤))
71, 6mpbiran2 706 . 2 (𝑦 ∈ {𝑥𝐴 ∣ ⊤} ↔ 𝑦𝐴)
87eqriv 2821 1 {𝑥𝐴 ∣ ⊤} = 𝐴
 Colors of variables: wff setvar class Syntax hints:   = wceq 1530  ⊤wtru 1531   ∈ wcel 2106  Ⅎwnfc 2965  {crab 3146 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-rab 3151  df-v 3501 This theorem is referenced by:  mptexgf  6983  aciunf1  30324
 Copyright terms: Public domain W3C validator