MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabtru Structured version   Visualization version   GIF version

Theorem rabtru 3614
Description: Abstract builder using the constant wff . (Contributed by Thierry Arnoux, 4-May-2020.)
Hypothesis
Ref Expression
rabtru.1 𝑥𝐴
Assertion
Ref Expression
rabtru {𝑥𝐴 ∣ ⊤} = 𝐴

Proof of Theorem rabtru
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tru 1543 . . 3
2 nfcv 2906 . . . 4 𝑥𝑦
3 rabtru.1 . . . 4 𝑥𝐴
4 nftru 1808 . . . 4 𝑥
5 biidd 261 . . . 4 (𝑥 = 𝑦 → (⊤ ↔ ⊤))
62, 3, 4, 5elrabf 3613 . . 3 (𝑦 ∈ {𝑥𝐴 ∣ ⊤} ↔ (𝑦𝐴 ∧ ⊤))
71, 6mpbiran2 706 . 2 (𝑦 ∈ {𝑥𝐴 ∣ ⊤} ↔ 𝑦𝐴)
87eqriv 2735 1 {𝑥𝐴 ∣ ⊤} = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wtru 1540  wcel 2108  wnfc 2886  {crab 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rab 3072  df-v 3424
This theorem is referenced by:  mptexgf  7080  aciunf1  30902
  Copyright terms: Public domain W3C validator