![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabtru | Structured version Visualization version GIF version |
Description: Abstract builder using the constant wff ⊤ (Contributed by Thierry Arnoux, 4-May-2020.) |
Ref | Expression |
---|---|
rabtru.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
rabtru | ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2939 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
2 | rabtru.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nftru 1900 | . . . 4 ⊢ Ⅎ𝑥⊤ | |
4 | biidd 254 | . . . 4 ⊢ (𝑥 = 𝑦 → (⊤ ↔ ⊤)) | |
5 | 1, 2, 3, 4 | elrabf 3550 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ⊤} ↔ (𝑦 ∈ 𝐴 ∧ ⊤)) |
6 | tru 1658 | . . . 4 ⊢ ⊤ | |
7 | 6 | biantru 526 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ 𝐴 ∧ ⊤)) |
8 | 5, 7 | bitr4i 270 | . 2 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ⊤} ↔ 𝑦 ∈ 𝐴) |
9 | 8 | eqriv 2794 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 385 = wceq 1653 ⊤wtru 1654 ∈ wcel 2157 Ⅎwnfc 2926 {crab 3091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-rab 3096 df-v 3385 |
This theorem is referenced by: mptexgf 6712 aciunf1 29974 |
Copyright terms: Public domain | W3C validator |