MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabtru Structured version   Visualization version   GIF version

Theorem rabtru 3679
Description: Abstract builder using the constant wff . (Contributed by Thierry Arnoux, 4-May-2020.)
Hypothesis
Ref Expression
rabtru.1 𝑥𝐴
Assertion
Ref Expression
rabtru {𝑥𝐴 ∣ ⊤} = 𝐴

Proof of Theorem rabtru
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tru 1543 . . 3
2 nfcv 2901 . . . 4 𝑥𝑦
3 rabtru.1 . . . 4 𝑥𝐴
4 nftru 1804 . . . 4 𝑥
5 biidd 261 . . . 4 (𝑥 = 𝑦 → (⊤ ↔ ⊤))
62, 3, 4, 5elrabf 3678 . . 3 (𝑦 ∈ {𝑥𝐴 ∣ ⊤} ↔ (𝑦𝐴 ∧ ⊤))
71, 6mpbiran2 706 . 2 (𝑦 ∈ {𝑥𝐴 ∣ ⊤} ↔ 𝑦𝐴)
87eqriv 2727 1 {𝑥𝐴 ∣ ⊤} = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wtru 1540  wcel 2104  wnfc 2881  {crab 3430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-rab 3431  df-v 3474
This theorem is referenced by:  mptexgf  7225  aciunf1  32155
  Copyright terms: Public domain W3C validator