MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqabcb Structured version   Visualization version   GIF version

Theorem eqabcb 2870
Description: Equality of a class variable and a class abstraction. Commuted form of eqabb 2868. (Contributed by NM, 20-Aug-1993.)
Assertion
Ref Expression
eqabcb ({𝑥𝜑} = 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem eqabcb
StepHypRef Expression
1 eqabb 2868 . 2 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
2 eqcom 2737 . 2 ({𝑥𝜑} = 𝐴𝐴 = {𝑥𝜑})
3 bicom 222 . . 3 ((𝜑𝑥𝐴) ↔ (𝑥𝐴𝜑))
43albii 1819 . 2 (∀𝑥(𝜑𝑥𝐴) ↔ ∀𝑥(𝑥𝐴𝜑))
51, 2, 43bitr4i 303 1 ({𝑥𝜑} = 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538   = wceq 1540  wcel 2109  {cab 2708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804
This theorem is referenced by:  rabeqcOLD  3660  dm0rn0  5891  dffo3  7077  dffo3f  7081  dfsup2  9402  rankf  9754  fmla0xp  35377  dfon3  35887  dfiota3  35918  onsupmaxb  43235  scottabf  44236
  Copyright terms: Public domain W3C validator