MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqabcb Structured version   Visualization version   GIF version

Theorem eqabcb 2873
Description: Equality of a class variable and a class abstraction. Commuted form of eqabb 2871. (Contributed by NM, 20-Aug-1993.)
Assertion
Ref Expression
eqabcb ({𝑥𝜑} = 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem eqabcb
StepHypRef Expression
1 eqabb 2871 . 2 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
2 eqcom 2737 . 2 ({𝑥𝜑} = 𝐴𝐴 = {𝑥𝜑})
3 bicom 221 . . 3 ((𝜑𝑥𝐴) ↔ (𝑥𝐴𝜑))
43albii 1819 . 2 (∀𝑥(𝜑𝑥𝐴) ↔ ∀𝑥(𝑥𝐴𝜑))
51, 2, 43bitr4i 302 1 ({𝑥𝜑} = 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537   = wceq 1539  wcel 2104  {cab 2707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808
This theorem is referenced by:  rabeqcOLD  3680  disjOLD  4447  dm0rn0  5923  dffo3  7102  dffo3f  7106  dfsup2  9441  rankf  9791  fmla0xp  34672  dfon3  35168  dfiota3  35199  onsupmaxb  42290  scottabf  43301
  Copyright terms: Public domain W3C validator