| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabcb | Structured version Visualization version GIF version | ||
| Description: Equality of a class variable and a class abstraction. Commuted form of eqabb 2868. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqabcb | ⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ ∀𝑥(𝜑 ↔ 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabb 2868 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) | |
| 2 | eqcom 2737 | . 2 ⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ 𝐴 = {𝑥 ∣ 𝜑}) | |
| 3 | bicom 222 | . . 3 ⊢ ((𝜑 ↔ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ↔ 𝜑)) | |
| 4 | 3 | albii 1819 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 ∈ 𝐴) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
| 5 | 1, 2, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ ∀𝑥(𝜑 ↔ 𝑥 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: rabeqcOLD 3660 dm0rn0 5891 dffo3 7077 dffo3f 7081 dfsup2 9402 rankf 9754 fmla0xp 35377 dfon3 35887 dfiota3 35918 onsupmaxb 43235 scottabf 44236 |
| Copyright terms: Public domain | W3C validator |