MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqabcb Structured version   Visualization version   GIF version

Theorem eqabcb 2886
Description: Equality of a class variable and a class abstraction. Commuted form of eqabb 2884. (Contributed by NM, 20-Aug-1993.)
Assertion
Ref Expression
eqabcb ({𝑥𝜑} = 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem eqabcb
StepHypRef Expression
1 eqabb 2884 . 2 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
2 eqcom 2747 . 2 ({𝑥𝜑} = 𝐴𝐴 = {𝑥𝜑})
3 bicom 222 . . 3 ((𝜑𝑥𝐴) ↔ (𝑥𝐴𝜑))
43albii 1817 . 2 (∀𝑥(𝜑𝑥𝐴) ↔ ∀𝑥(𝑥𝐴𝜑))
51, 2, 43bitr4i 303 1 ({𝑥𝜑} = 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1535   = wceq 1537  wcel 2108  {cab 2717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819
This theorem is referenced by:  rabeqcOLD  3706  dm0rn0  5949  dffo3  7136  dffo3f  7140  dfsup2  9513  rankf  9863  fmla0xp  35351  dfon3  35856  dfiota3  35887  onsupmaxb  43200  scottabf  44209
  Copyright terms: Public domain W3C validator