![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqabcb | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction. Commuted form of eqabb 2884. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
eqabcb | ⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ ∀𝑥(𝜑 ↔ 𝑥 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqabb 2884 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) | |
2 | eqcom 2747 | . 2 ⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ 𝐴 = {𝑥 ∣ 𝜑}) | |
3 | bicom 222 | . . 3 ⊢ ((𝜑 ↔ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ↔ 𝜑)) | |
4 | 3 | albii 1817 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 ∈ 𝐴) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
5 | 1, 2, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ ∀𝑥(𝜑 ↔ 𝑥 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2108 {cab 2717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: rabeqcOLD 3706 dm0rn0 5949 dffo3 7136 dffo3f 7140 dfsup2 9513 rankf 9863 fmla0xp 35351 dfon3 35856 dfiota3 35887 onsupmaxb 43200 scottabf 44209 |
Copyright terms: Public domain | W3C validator |