| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabcb | Structured version Visualization version GIF version | ||
| Description: Equality of a class variable and a class abstraction. Commuted form of eqabb 2870. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqabcb | ⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ ∀𝑥(𝜑 ↔ 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabb 2870 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) | |
| 2 | eqcom 2738 | . 2 ⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ 𝐴 = {𝑥 ∣ 𝜑}) | |
| 3 | bicom 222 | . . 3 ⊢ ((𝜑 ↔ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ↔ 𝜑)) | |
| 4 | 3 | albii 1820 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 ∈ 𝐴) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
| 5 | 1, 2, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ ∀𝑥(𝜑 ↔ 𝑥 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 = wceq 1541 ∈ wcel 2111 {cab 2709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: dm0rn0OLD 5860 dffo3 7030 dffo3f 7034 dfsup2 9323 rankf 9682 fmla0xp 35419 dfon3 35926 dfiota3 35957 onsupmaxb 43272 scottabf 44273 |
| Copyright terms: Public domain | W3C validator |