MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabid2OLD Structured version   Visualization version   GIF version

Theorem rabid2OLD 3314
Description: Obsolete version of rabid2 3313 as of 24-11-2024. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
rabid2OLD (𝐴 = {𝑥𝐴𝜑} ↔ ∀𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabid2OLD
StepHypRef Expression
1 abeq2 2874 . . 3 (𝐴 = {𝑥 ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴𝜑)))
2 pm4.71 558 . . . 4 ((𝑥𝐴𝜑) ↔ (𝑥𝐴 ↔ (𝑥𝐴𝜑)))
32albii 1826 . . 3 (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴𝜑)))
41, 3bitr4i 277 . 2 (𝐴 = {𝑥 ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥(𝑥𝐴𝜑))
5 df-rab 3075 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
65eqeq2i 2753 . 2 (𝐴 = {𝑥𝐴𝜑} ↔ 𝐴 = {𝑥 ∣ (𝑥𝐴𝜑)})
7 df-ral 3071 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
84, 6, 73bitr4i 303 1 (𝐴 = {𝑥𝐴𝜑} ↔ ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1540   = wceq 1542  wcel 2110  {cab 2717  wral 3066  {crab 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rab 3075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator