Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabid2 | Structured version Visualization version GIF version |
Description: An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2024.) |
Ref | Expression |
---|---|
rabid2 | ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2908 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | rabid2f 3311 | 1 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∀wral 3065 {crab 3069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rab 3074 |
This theorem is referenced by: rabxm 4325 iinrab2 5003 riinrab 5017 class2seteq 5280 dmmptg 6142 frpoinsg 6243 wfisgOLD 6254 dmmptd 6574 fneqeql 6917 fmpt 6978 zfrep6 7784 frinsg 9493 axdc2lem 10188 ioomax 13136 iccmax 13137 hashbc 14146 lcmf0 16320 dfphi2 16456 phiprmpw 16458 phisum 16472 isnsg4 18776 symggen2 19060 psgnfvalfi 19102 lssuni 20182 psgnghm2 20767 ocv0 20863 dsmmfi 20926 frlmfibas 20950 frlmlbs 20985 psr1baslem 21337 ordtrest2lem 22335 comppfsc 22664 xkouni 22731 xkoccn 22751 tsmsfbas 23260 clsocv 24395 ehlbase 24560 ovolicc2lem4 24665 itg2monolem1 24896 musum 26321 lgsquadlem2 26510 umgr2v2evd2 27875 frgrregorufr0 28667 ubthlem1 29211 xrsclat 31268 psgndmfi 31344 zarcls0 31797 ordtrest2NEWlem 31851 hasheuni 32032 measvuni 32161 imambfm 32208 subfacp1lem6 33126 connpconn 33176 cvmliftmolem2 33223 cvmlift2lem12 33255 tfisg 33765 poimirlem28 35784 fdc 35882 isbnd3 35921 pmap1N 37760 pol1N 37903 dia1N 39046 dihwN 39282 vdioph 40581 fiphp3d 40621 dmmptdf 42716 stirlinglem14 43582 fvmptrabdm 44736 suppdm 45803 |
Copyright terms: Public domain | W3C validator |