![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabid2 | Structured version Visualization version GIF version |
Description: An "identity" law for restricted class abstraction. Prefer rabid2im 3467 if one direction is sufficient. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2024.) |
Ref | Expression |
---|---|
rabid2 | ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2903 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | rabid2f 3466 | 1 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∀wral 3059 {crab 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rab 3434 |
This theorem is referenced by: iinrab2 5075 riinrab 5089 dmmptg 6264 frpoinsg 6366 wfisgOLD 6377 dmmptd 6714 fneqeql 7066 fmpt 7130 tfisg 7875 zfrep6 7978 frinsg 9789 axdc2lem 10486 ioomax 13459 iccmax 13460 hashbc 14489 lcmf0 16668 dfphi2 16808 phiprmpw 16810 phisum 16824 isnsg4 19198 symggen2 19504 psgnfvalfi 19546 lssuni 20955 psgnghm2 21617 ocv0 21713 dsmmfi 21776 frlmfibas 21800 frlmlbs 21835 psr1baslem 22202 ordtrest2lem 23227 comppfsc 23556 xkouni 23623 xkoccn 23643 tsmsfbas 24152 clsocv 25298 ehlbase 25463 ovolicc2lem4 25569 itg2monolem1 25800 musum 27249 lgsquadlem2 27440 umgr2v2evd2 29560 frgrregorufr0 30353 ubthlem1 30899 xrsclat 32996 psgndmfi 33101 primefldgen1 33303 zarcls0 33829 ordtrest2NEWlem 33883 hasheuni 34066 measvuni 34195 imambfm 34244 subfacp1lem6 35170 connpconn 35220 cvmliftmolem2 35267 cvmlift2lem12 35299 poimirlem28 37635 fdc 37732 isbnd3 37771 pmap1N 39750 pol1N 39893 dia1N 41036 dihwN 41272 vdioph 42767 fiphp3d 42807 stirlinglem14 46043 fvmptrabdm 47243 suppdm 48356 |
Copyright terms: Public domain | W3C validator |