| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabid2 | Structured version Visualization version GIF version | ||
| Description: An "identity" law for restricted class abstraction. Prefer rabid2im 3453 if one direction is sufficient. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2024.) |
| Ref | Expression |
|---|---|
| rabid2 | ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2899 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | rabid2f 3452 | 1 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∀wral 3052 {crab 3420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rab 3421 |
| This theorem is referenced by: iinrab2 5051 riinrab 5065 dmmptg 6236 frpoinsg 6337 wfisgOLD 6348 dmmptd 6688 fneqeql 7041 fmpt 7105 tfisg 7854 zfrep6 7958 frinsg 9770 axdc2lem 10467 ioomax 13444 iccmax 13445 hashbc 14476 lcmf0 16658 dfphi2 16798 phiprmpw 16800 phisum 16815 isnsg4 19155 symggen2 19457 psgnfvalfi 19499 lssuni 20901 psgnghm2 21546 ocv0 21642 dsmmfi 21703 frlmfibas 21727 frlmlbs 21762 psr1baslem 22125 ordtrest2lem 23146 comppfsc 23475 xkouni 23542 xkoccn 23562 tsmsfbas 24071 clsocv 25207 ehlbase 25372 ovolicc2lem4 25478 itg2monolem1 25708 musum 27158 lgsquadlem2 27349 umgr2v2evd2 29512 frgrregorufr0 30310 ubthlem1 30856 xrsclat 33008 psgndmfi 33114 primefldgen1 33320 zarcls0 33904 ordtrest2NEWlem 33958 hasheuni 34121 measvuni 34250 imambfm 34299 subfacp1lem6 35212 connpconn 35262 cvmliftmolem2 35309 cvmlift2lem12 35341 poimirlem28 37677 fdc 37774 isbnd3 37813 pmap1N 39791 pol1N 39934 dia1N 41077 dihwN 41313 vdioph 42777 fiphp3d 42817 stirlinglem14 46096 fvmptrabdm 47302 suppdm 48466 |
| Copyright terms: Public domain | W3C validator |