| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabid2 | Structured version Visualization version GIF version | ||
| Description: An "identity" law for restricted class abstraction. Prefer rabid2im 3427 if one direction is sufficient. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2024.) |
| Ref | Expression |
|---|---|
| rabid2 | ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | rabid2f 3426 | 1 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∀wral 3044 {crab 3394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3395 |
| This theorem is referenced by: iinrab2 5019 riinrab 5033 dmmptg 6191 frpoinsg 6291 dmmptd 6627 fneqeql 6980 fmpt 7044 tfisg 7787 zfrep6 7890 frinsg 9647 axdc2lem 10342 ioomax 13325 iccmax 13326 hashbc 14360 lcmf0 16545 dfphi2 16685 phiprmpw 16687 phisum 16702 isnsg4 19046 symggen2 19350 psgnfvalfi 19392 lssuni 20842 psgnghm2 21488 ocv0 21584 dsmmfi 21645 frlmfibas 21669 frlmlbs 21704 psr1baslem 22067 ordtrest2lem 23088 comppfsc 23417 xkouni 23484 xkoccn 23504 tsmsfbas 24013 clsocv 25148 ehlbase 25313 ovolicc2lem4 25419 itg2monolem1 25649 musum 27099 lgsquadlem2 27290 umgr2v2evd2 29473 frgrregorufr0 30268 ubthlem1 30814 xrsclat 32966 psgndmfi 33041 primefldgen1 33261 zarcls0 33841 ordtrest2NEWlem 33895 hasheuni 34058 measvuni 34187 imambfm 34236 subfacp1lem6 35168 connpconn 35218 cvmliftmolem2 35265 cvmlift2lem12 35297 poimirlem28 37638 fdc 37735 isbnd3 37774 pmap1N 39756 pol1N 39899 dia1N 41042 dihwN 41278 vdioph 42762 fiphp3d 42802 stirlinglem14 46078 fvmptrabdm 47287 suppdm 48505 |
| Copyright terms: Public domain | W3C validator |