| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabid2 | Structured version Visualization version GIF version | ||
| Description: An "identity" law for restricted class abstraction. Prefer rabid2im 3441 if one direction is sufficient. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2024.) |
| Ref | Expression |
|---|---|
| rabid2 | ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2892 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | rabid2f 3440 | 1 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∀wral 3045 {crab 3408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rab 3409 |
| This theorem is referenced by: iinrab2 5036 riinrab 5050 dmmptg 6217 frpoinsg 6318 dmmptd 6665 fneqeql 7020 fmpt 7084 tfisg 7832 zfrep6 7935 frinsg 9710 axdc2lem 10407 ioomax 13389 iccmax 13390 hashbc 14424 lcmf0 16610 dfphi2 16750 phiprmpw 16752 phisum 16767 isnsg4 19105 symggen2 19407 psgnfvalfi 19449 lssuni 20851 psgnghm2 21496 ocv0 21592 dsmmfi 21653 frlmfibas 21677 frlmlbs 21712 psr1baslem 22075 ordtrest2lem 23096 comppfsc 23425 xkouni 23492 xkoccn 23512 tsmsfbas 24021 clsocv 25156 ehlbase 25321 ovolicc2lem4 25427 itg2monolem1 25657 musum 27107 lgsquadlem2 27298 umgr2v2evd2 29461 frgrregorufr0 30259 ubthlem1 30805 xrsclat 32955 psgndmfi 33061 primefldgen1 33277 zarcls0 33864 ordtrest2NEWlem 33918 hasheuni 34081 measvuni 34210 imambfm 34259 subfacp1lem6 35172 connpconn 35222 cvmliftmolem2 35269 cvmlift2lem12 35301 poimirlem28 37637 fdc 37734 isbnd3 37773 pmap1N 39756 pol1N 39899 dia1N 41042 dihwN 41278 vdioph 42760 fiphp3d 42800 stirlinglem14 46078 fvmptrabdm 47284 suppdm 48489 |
| Copyright terms: Public domain | W3C validator |