![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabid2 | Structured version Visualization version GIF version |
Description: An "identity" law for restricted class abstraction. Prefer rabid2im 3471 if one direction is sufficient. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2024.) |
Ref | Expression |
---|---|
rabid2 | ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2904 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | rabid2f 3470 | 1 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∀wral 3063 {crab 3438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ral 3064 df-rab 3439 |
This theorem is referenced by: iinrab2 5096 riinrab 5110 dmmptg 6272 frpoinsg 6374 wfisgOLD 6385 dmmptd 6724 fneqeql 7077 fmpt 7142 tfisg 7887 zfrep6 7991 frinsg 9816 axdc2lem 10513 ioomax 13478 iccmax 13479 hashbc 14498 lcmf0 16675 dfphi2 16816 phiprmpw 16818 phisum 16832 isnsg4 19202 symggen2 19508 psgnfvalfi 19550 lssuni 20955 psgnghm2 21617 ocv0 21713 dsmmfi 21776 frlmfibas 21800 frlmlbs 21835 psr1baslem 22200 ordtrest2lem 23225 comppfsc 23554 xkouni 23621 xkoccn 23641 tsmsfbas 24150 clsocv 25296 ehlbase 25461 ovolicc2lem4 25567 itg2monolem1 25798 musum 27243 lgsquadlem2 27434 umgr2v2evd2 29554 frgrregorufr0 30347 ubthlem1 30893 xrsclat 32986 psgndmfi 33083 primefldgen1 33280 zarcls0 33806 ordtrest2NEWlem 33860 hasheuni 34041 measvuni 34170 imambfm 34219 subfacp1lem6 35145 connpconn 35195 cvmliftmolem2 35242 cvmlift2lem12 35274 poimirlem28 37556 fdc 37653 isbnd3 37692 pmap1N 39672 pol1N 39815 dia1N 40958 dihwN 41194 vdioph 42672 fiphp3d 42712 stirlinglem14 45942 fvmptrabdm 47140 suppdm 48157 |
Copyright terms: Public domain | W3C validator |