| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabid2 | Structured version Visualization version GIF version | ||
| Description: An "identity" law for restricted class abstraction. Prefer rabid2im 3427 if one direction is sufficient. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2024.) |
| Ref | Expression |
|---|---|
| rabid2 | ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2894 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | rabid2f 3426 | 1 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∀wral 3047 {crab 3395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 |
| This theorem is referenced by: iinrab2 5016 riinrab 5030 dmmptg 6189 frpoinsg 6290 dmmptd 6626 fneqeql 6979 fmpt 7043 tfisg 7784 zfrep6 7887 frinsg 9644 axdc2lem 10339 ioomax 13322 iccmax 13323 hashbc 14360 lcmf0 16545 dfphi2 16685 phiprmpw 16687 phisum 16702 isnsg4 19079 symggen2 19383 psgnfvalfi 19425 lssuni 20872 psgnghm2 21518 ocv0 21614 dsmmfi 21675 frlmfibas 21699 frlmlbs 21734 psr1baslem 22097 ordtrest2lem 23118 comppfsc 23447 xkouni 23514 xkoccn 23534 tsmsfbas 24043 clsocv 25177 ehlbase 25342 ovolicc2lem4 25448 itg2monolem1 25678 musum 27128 lgsquadlem2 27319 umgr2v2evd2 29506 frgrregorufr0 30304 ubthlem1 30850 xrsclat 32992 psgndmfi 33067 primefldgen1 33287 zarcls0 33881 ordtrest2NEWlem 33935 hasheuni 34098 measvuni 34227 imambfm 34275 subfacp1lem6 35229 connpconn 35279 cvmliftmolem2 35326 cvmlift2lem12 35358 poimirlem28 37698 fdc 37795 isbnd3 37834 pmap1N 39876 pol1N 40019 dia1N 41162 dihwN 41398 vdioph 42882 fiphp3d 42922 stirlinglem14 46195 fvmptrabdm 47403 suppdm 48621 |
| Copyright terms: Public domain | W3C validator |