![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabid2 | Structured version Visualization version GIF version |
Description: An "identity" law for restricted class abstraction. Prefer rabid2im 3477 if one direction is sufficient. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2024.) |
Ref | Expression |
---|---|
rabid2 | ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2908 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | rabid2f 3476 | 1 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∀wral 3067 {crab 3443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rab 3444 |
This theorem is referenced by: iinrab2 5093 riinrab 5107 dmmptg 6273 frpoinsg 6375 wfisgOLD 6386 dmmptd 6725 fneqeql 7079 fmpt 7144 tfisg 7891 zfrep6 7995 frinsg 9820 axdc2lem 10517 ioomax 13482 iccmax 13483 hashbc 14502 lcmf0 16681 dfphi2 16821 phiprmpw 16823 phisum 16837 isnsg4 19207 symggen2 19513 psgnfvalfi 19555 lssuni 20960 psgnghm2 21622 ocv0 21718 dsmmfi 21781 frlmfibas 21805 frlmlbs 21840 psr1baslem 22207 ordtrest2lem 23232 comppfsc 23561 xkouni 23628 xkoccn 23648 tsmsfbas 24157 clsocv 25303 ehlbase 25468 ovolicc2lem4 25574 itg2monolem1 25805 musum 27252 lgsquadlem2 27443 umgr2v2evd2 29563 frgrregorufr0 30356 ubthlem1 30902 xrsclat 32994 psgndmfi 33091 primefldgen1 33288 zarcls0 33814 ordtrest2NEWlem 33868 hasheuni 34049 measvuni 34178 imambfm 34227 subfacp1lem6 35153 connpconn 35203 cvmliftmolem2 35250 cvmlift2lem12 35282 poimirlem28 37608 fdc 37705 isbnd3 37744 pmap1N 39724 pol1N 39867 dia1N 41010 dihwN 41246 vdioph 42735 fiphp3d 42775 stirlinglem14 46008 fvmptrabdm 47208 suppdm 48239 |
Copyright terms: Public domain | W3C validator |