| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabid2 | Structured version Visualization version GIF version | ||
| Description: An "identity" law for restricted class abstraction. Prefer rabid2im 3435 if one direction is sufficient. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2024.) |
| Ref | Expression |
|---|---|
| rabid2 | ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | rabid2f 3434 | 1 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∀wral 3044 {crab 3402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3403 |
| This theorem is referenced by: iinrab2 5029 riinrab 5043 dmmptg 6203 frpoinsg 6304 dmmptd 6645 fneqeql 7000 fmpt 7064 tfisg 7810 zfrep6 7913 frinsg 9680 axdc2lem 10377 ioomax 13359 iccmax 13360 hashbc 14394 lcmf0 16580 dfphi2 16720 phiprmpw 16722 phisum 16737 isnsg4 19081 symggen2 19385 psgnfvalfi 19427 lssuni 20877 psgnghm2 21523 ocv0 21619 dsmmfi 21680 frlmfibas 21704 frlmlbs 21739 psr1baslem 22102 ordtrest2lem 23123 comppfsc 23452 xkouni 23519 xkoccn 23539 tsmsfbas 24048 clsocv 25183 ehlbase 25348 ovolicc2lem4 25454 itg2monolem1 25684 musum 27134 lgsquadlem2 27325 umgr2v2evd2 29508 frgrregorufr0 30303 ubthlem1 30849 xrsclat 32995 psgndmfi 33070 primefldgen1 33287 zarcls0 33851 ordtrest2NEWlem 33905 hasheuni 34068 measvuni 34197 imambfm 34246 subfacp1lem6 35165 connpconn 35215 cvmliftmolem2 35262 cvmlift2lem12 35294 poimirlem28 37635 fdc 37732 isbnd3 37771 pmap1N 39754 pol1N 39897 dia1N 41040 dihwN 41276 vdioph 42760 fiphp3d 42800 stirlinglem14 46078 fvmptrabdm 47287 suppdm 48492 |
| Copyright terms: Public domain | W3C validator |