![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabid2 | Structured version Visualization version GIF version |
Description: An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
rabid2 | ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2 2913 | . . 3 ⊢ (𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
2 | pm4.71 558 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
3 | 2 | albii 1802 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
4 | 1, 3 | bitr4i 279 | . 2 ⊢ (𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
5 | df-rab 3113 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
6 | 5 | eqeq2i 2806 | . 2 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
7 | df-ral 3109 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
8 | 4, 6, 7 | 3bitr4i 304 | 1 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∀wal 1520 = wceq 1522 ∈ wcel 2080 {cab 2774 ∀wral 3104 {crab 3108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-ext 2768 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-clab 2775 df-cleq 2787 df-clel 2862 df-ral 3109 df-rab 3113 |
This theorem is referenced by: rabxm 4262 iinrab2 4893 riinrab 4907 class2seteq 5149 dmmptg 5974 wfisg 6061 dmmptd 6364 fneqeql 6684 fmpt 6740 zfrep6 7515 axdc2lem 9719 ioomax 12661 iccmax 12662 hashbc 13659 lcmf0 15807 dfphi2 15940 phiprmpw 15942 phisum 15956 isnsg4 18076 symggen2 18330 psgnfvalfi 18372 lssuni 19401 psr1baslem 20036 psgnghm2 20407 ocv0 20503 dsmmfi 20564 frlmfibas 20588 frlmlbs 20623 ordtrest2lem 21495 comppfsc 21824 xkouni 21891 xkoccn 21911 tsmsfbas 22419 clsocv 23536 ehlbase 23701 ovolicc2lem4 23804 itg2monolem1 24034 musum 25450 lgsquadlem2 25639 umgr2v2evd2 26992 frgrregorufr0 27787 ubthlem1 28330 xrsclat 30333 psgndmfi 30654 ordtrest2NEWlem 30774 hasheuni 30953 measvuni 31082 imambfm 31129 subfacp1lem6 32034 connpconn 32084 cvmliftmolem2 32131 cvmlift2lem12 32163 tfisg 32658 frpoinsg 32684 frinsg 32690 poimirlem28 34464 fdc 34565 isbnd3 34607 pmap1N 36447 pol1N 36590 dia1N 37733 dihwN 37969 vdioph 38874 fiphp3d 38914 dmmptdf 41041 stirlinglem14 41928 fvmptrabdm 43022 suppdm 44060 |
Copyright terms: Public domain | W3C validator |