| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabid2 | Structured version Visualization version GIF version | ||
| Description: An "identity" law for restricted class abstraction. Prefer rabid2im 3468 if one direction is sufficient. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2024.) |
| Ref | Expression |
|---|---|
| rabid2 | ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2904 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | rabid2f 3467 | 1 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∀wral 3060 {crab 3435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rab 3436 |
| This theorem is referenced by: iinrab2 5069 riinrab 5083 dmmptg 6261 frpoinsg 6363 wfisgOLD 6374 dmmptd 6712 fneqeql 7065 fmpt 7129 tfisg 7876 zfrep6 7980 frinsg 9792 axdc2lem 10489 ioomax 13463 iccmax 13464 hashbc 14493 lcmf0 16672 dfphi2 16812 phiprmpw 16814 phisum 16829 isnsg4 19186 symggen2 19490 psgnfvalfi 19532 lssuni 20938 psgnghm2 21600 ocv0 21696 dsmmfi 21759 frlmfibas 21783 frlmlbs 21818 psr1baslem 22187 ordtrest2lem 23212 comppfsc 23541 xkouni 23608 xkoccn 23628 tsmsfbas 24137 clsocv 25285 ehlbase 25450 ovolicc2lem4 25556 itg2monolem1 25786 musum 27235 lgsquadlem2 27426 umgr2v2evd2 29546 frgrregorufr0 30344 ubthlem1 30890 xrsclat 33014 psgndmfi 33119 primefldgen1 33324 zarcls0 33868 ordtrest2NEWlem 33922 hasheuni 34087 measvuni 34216 imambfm 34265 subfacp1lem6 35191 connpconn 35241 cvmliftmolem2 35288 cvmlift2lem12 35320 poimirlem28 37656 fdc 37753 isbnd3 37792 pmap1N 39770 pol1N 39913 dia1N 41056 dihwN 41292 vdioph 42795 fiphp3d 42835 stirlinglem14 46107 fvmptrabdm 47310 suppdm 48432 |
| Copyright terms: Public domain | W3C validator |