![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabid2 | Structured version Visualization version GIF version |
Description: An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2024.) |
Ref | Expression |
---|---|
rabid2 | ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2901 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | rabid2f 3461 | 1 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∀wral 3059 {crab 3430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rab 3431 |
This theorem is referenced by: class2seteq 3699 rabxm 4385 iinrab2 5072 riinrab 5086 dmmptg 6240 frpoinsg 6343 wfisgOLD 6354 dmmptd 6694 fneqeql 7046 fmpt 7110 tfisg 7845 zfrep6 7943 frinsg 9748 axdc2lem 10445 ioomax 13403 iccmax 13404 hashbc 14416 lcmf0 16575 dfphi2 16711 phiprmpw 16713 phisum 16727 isnsg4 19083 symggen2 19380 psgnfvalfi 19422 lssuni 20694 psgnghm2 21353 ocv0 21449 dsmmfi 21512 frlmfibas 21536 frlmlbs 21571 psr1baslem 21928 ordtrest2lem 22927 comppfsc 23256 xkouni 23323 xkoccn 23343 tsmsfbas 23852 clsocv 24998 ehlbase 25163 ovolicc2lem4 25269 itg2monolem1 25500 musum 26931 lgsquadlem2 27120 umgr2v2evd2 29051 frgrregorufr0 29844 ubthlem1 30390 xrsclat 32448 psgndmfi 32527 primefldgen1 32681 zarcls0 33146 ordtrest2NEWlem 33200 hasheuni 33381 measvuni 33510 imambfm 33559 subfacp1lem6 34474 connpconn 34524 cvmliftmolem2 34571 cvmlift2lem12 34603 poimirlem28 36819 fdc 36916 isbnd3 36955 pmap1N 38941 pol1N 39084 dia1N 40227 dihwN 40463 vdioph 41819 fiphp3d 41859 stirlinglem14 45101 fvmptrabdm 46299 suppdm 47278 |
Copyright terms: Public domain | W3C validator |