Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabid2 | Structured version Visualization version GIF version |
Description: An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2024.) |
Ref | Expression |
---|---|
rabid2 | ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2905 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | rabid2f 3332 | 1 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∀wral 3062 {crab 3303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rab 3306 |
This theorem is referenced by: rabxm 4326 iinrab2 5006 riinrab 5020 class2seteq 5286 dmmptg 6160 frpoinsg 6261 wfisgOLD 6272 dmmptd 6608 fneqeql 6955 fmpt 7016 zfrep6 7829 frinsg 9557 axdc2lem 10254 ioomax 13204 iccmax 13205 hashbc 14214 lcmf0 16388 dfphi2 16524 phiprmpw 16526 phisum 16540 isnsg4 18844 symggen2 19128 psgnfvalfi 19170 lssuni 20250 psgnghm2 20835 ocv0 20931 dsmmfi 20994 frlmfibas 21018 frlmlbs 21053 psr1baslem 21405 ordtrest2lem 22403 comppfsc 22732 xkouni 22799 xkoccn 22819 tsmsfbas 23328 clsocv 24463 ehlbase 24628 ovolicc2lem4 24733 itg2monolem1 24964 musum 26389 lgsquadlem2 26578 umgr2v2evd2 27943 frgrregorufr0 28737 ubthlem1 29281 xrsclat 31338 psgndmfi 31414 zarcls0 31867 ordtrest2NEWlem 31921 hasheuni 32102 measvuni 32231 imambfm 32278 subfacp1lem6 33196 connpconn 33246 cvmliftmolem2 33293 cvmlift2lem12 33325 tfisg 33835 poimirlem28 35853 fdc 35951 isbnd3 35990 pmap1N 37981 pol1N 38124 dia1N 39267 dihwN 39503 vdioph 40796 fiphp3d 40836 stirlinglem14 43857 fvmptrabdm 45029 suppdm 46095 |
Copyright terms: Public domain | W3C validator |