MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqf Structured version   Visualization version   GIF version

Theorem rabeqf 3451
Description: Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.)
Hypotheses
Ref Expression
rabeqf.1 𝑥𝐴
rabeqf.2 𝑥𝐵
Assertion
Ref Expression
rabeqf (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})

Proof of Theorem rabeqf
StepHypRef Expression
1 rabeqf.1 . . . 4 𝑥𝐴
2 rabeqf.2 . . . 4 𝑥𝐵
31, 2nfeq 2912 . . 3 𝑥 𝐴 = 𝐵
4 eleq2 2823 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
54anbi1d 631 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
63, 5abbid 2803 . 2 (𝐴 = 𝐵 → {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑥 ∣ (𝑥𝐵𝜑)})
7 df-rab 3416 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
8 df-rab 3416 . 2 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
96, 7, 83eqtr4g 2795 1 (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {cab 2713  wnfc 2883  {crab 3415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-rab 3416
This theorem is referenced by:  fpwrelmapffs  32711  rabeq12f  38181  issmfdf  46766  smfpimltmpt  46775  smfpimltxrmptf  46787  smfpimgtmpt  46810  smfpimgtxrmptf  46813  smfsupmpt  46844
  Copyright terms: Public domain W3C validator