Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqf Structured version   Visualization version   GIF version

Theorem rabeqf 3467
 Description: Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.)
Hypotheses
Ref Expression
rabeqf.1 𝑥𝐴
rabeqf.2 𝑥𝐵
Assertion
Ref Expression
rabeqf (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})

Proof of Theorem rabeqf
StepHypRef Expression
1 rabeqf.1 . . . 4 𝑥𝐴
2 rabeqf.2 . . . 4 𝑥𝐵
31, 2nfeq 2995 . . 3 𝑥 𝐴 = 𝐵
4 eleq2 2904 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
54anbi1d 632 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
63, 5abbid 2890 . 2 (𝐴 = 𝐵 → {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑥 ∣ (𝑥𝐵𝜑)})
7 df-rab 3142 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
8 df-rab 3142 . 2 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
96, 7, 83eqtr4g 2884 1 (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  {cab 2802  Ⅎwnfc 2962  {crab 3137 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-rab 3142 This theorem is referenced by:  fpwrelmapffs  30474  rabeq12f  35505  issmfdf  43234  smfpimltmpt  43243  smfpimltxrmpt  43255  smfpimgtmpt  43277  smfpimgtxrmpt  43280  smfsupmpt  43309  smfinfmpt  43313
 Copyright terms: Public domain W3C validator