![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeqf | Structured version Visualization version GIF version |
Description: Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) |
Ref | Expression |
---|---|
rabeqf.1 | ⊢ Ⅎ𝑥𝐴 |
rabeqf.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
rabeqf | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | rabeqf.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfeq 2917 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
4 | eleq2 2823 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
5 | 4 | anbi1d 631 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
6 | 3, 5 | abbid 2804 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
7 | df-rab 3434 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
8 | df-rab 3434 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
9 | 6, 7, 8 | 3eqtr4g 2798 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cab 2710 Ⅎwnfc 2884 {crab 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rab 3434 |
This theorem is referenced by: fpwrelmapffs 31959 rabeq12f 37025 issmfdf 45453 smfpimltmpt 45462 smfpimltxrmptf 45474 smfpimgtmpt 45497 smfpimgtxrmptf 45500 smfsupmpt 45531 smfinfmpt 45535 |
Copyright terms: Public domain | W3C validator |