MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabid2f Structured version   Visualization version   GIF version

Theorem rabid2f 3313
Description: An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Revised by Thierry Arnoux, 13-Mar-2017.)
Hypothesis
Ref Expression
rabid2f.1 𝑥𝐴
Assertion
Ref Expression
rabid2f (𝐴 = {𝑥𝐴𝜑} ↔ ∀𝑥𝐴 𝜑)

Proof of Theorem rabid2f
StepHypRef Expression
1 rabid2f.1 . . . 4 𝑥𝐴
21abeq2f 2940 . . 3 (𝐴 = {𝑥 ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴𝜑)))
3 pm4.71 558 . . . 4 ((𝑥𝐴𝜑) ↔ (𝑥𝐴 ↔ (𝑥𝐴𝜑)))
43albii 1822 . . 3 (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴𝜑)))
52, 4bitr4i 277 . 2 (𝐴 = {𝑥 ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥(𝑥𝐴𝜑))
6 df-rab 3073 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
76eqeq2i 2751 . 2 (𝐴 = {𝑥𝐴𝜑} ↔ 𝐴 = {𝑥 ∣ (𝑥𝐴𝜑)})
8 df-ral 3069 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
95, 7, 83bitr4i 303 1 (𝐴 = {𝑥𝐴𝜑} ↔ ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wcel 2106  {cab 2715  wnfc 2887  wral 3064  {crab 3068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rab 3073
This theorem is referenced by:  rabid2  3314  funcnvmpt  31004  dmmptdf2  42776
  Copyright terms: Public domain W3C validator