Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ralabsod Structured version   Visualization version   GIF version

Theorem ralabsod 45003
Description: Deduction form of ralabso 45001. (Contributed by Eric Schmidt, 19-Oct-2025.)
Hypothesis
Ref Expression
ralabsod.1 (𝜑 → Tr 𝑀)
Assertion
Ref Expression
ralabsod ((𝜑𝐴𝑀) → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝑀 (𝑥𝐴𝜓)))
Distinct variable groups:   𝑥,𝑀   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem ralabsod
StepHypRef Expression
1 ralabsod.1 . 2 (𝜑 → Tr 𝑀)
2 ralabso 45001 . 2 ((Tr 𝑀𝐴𝑀) → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝑀 (𝑥𝐴𝜓)))
31, 2sylan 580 1 ((𝜑𝐴𝑀) → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝑀 (𝑥𝐴𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wral 3047  Tr wtr 5193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-v 3438  df-ss 3914  df-uni 4855  df-tr 5194
This theorem is referenced by:  ralabsobidv  45005
  Copyright terms: Public domain W3C validator