Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modelac8prim Structured version   Visualization version   GIF version

Theorem modelac8prim 45149
Description: If 𝑀 is a transitive class, then the following are equivalent. (1) Every nonempty set 𝑥𝑀 of pairwise disjoint nonempty sets has a choice set in 𝑀. (2) The class 𝑀 models the Axiom of Choice, in the form ac8prim 45148.

Lemma II.2.11(7) of [Kunen2] p. 114. Kunen has the additional hypotheses that the Extensionality, Separation, Pairing, and Union axioms are true in 𝑀. This, apparently, is because Kunen's statement of the Axiom of Choice uses defined notions, including and , and these axioms guarantee that these notions are well-defined. When we state the axiom using primitives only, the need for these hypotheses disappears. (Contributed by Eric Schmidt, 19-Oct-2025.)

Assertion
Ref Expression
modelac8prim (Tr 𝑀 → (∀𝑥𝑀 ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∀𝑥𝑀 ((∀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀 𝑤𝑧) ∧ ∀𝑧𝑀𝑤𝑀 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀𝑣𝑀 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))))
Distinct variable group:   𝑥,𝑧,𝑦,𝑤,𝑣,𝑀

Proof of Theorem modelac8prim
StepHypRef Expression
1 ralabso 45125 . . . . 5 ((Tr 𝑀𝑥𝑀) → (∀𝑧𝑥 𝑧 ≠ ∅ ↔ ∀𝑧𝑀 (𝑧𝑥𝑧 ≠ ∅)))
2 n0abso 45133 . . . . . . . 8 ((Tr 𝑀𝑧𝑀) → (𝑧 ≠ ∅ ↔ ∃𝑤𝑀 𝑤𝑧))
32adantlr 715 . . . . . . 7 (((Tr 𝑀𝑥𝑀) ∧ 𝑧𝑀) → (𝑧 ≠ ∅ ↔ ∃𝑤𝑀 𝑤𝑧))
43imbi2d 340 . . . . . 6 (((Tr 𝑀𝑥𝑀) ∧ 𝑧𝑀) → ((𝑧𝑥𝑧 ≠ ∅) ↔ (𝑧𝑥 → ∃𝑤𝑀 𝑤𝑧)))
54ralbidva 3154 . . . . 5 ((Tr 𝑀𝑥𝑀) → (∀𝑧𝑀 (𝑧𝑥𝑧 ≠ ∅) ↔ ∀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀 𝑤𝑧)))
61, 5bitrd 279 . . . 4 ((Tr 𝑀𝑥𝑀) → (∀𝑧𝑥 𝑧 ≠ ∅ ↔ ∀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀 𝑤𝑧)))
7 simpl 482 . . . . . . 7 ((Tr 𝑀𝑥𝑀) → Tr 𝑀)
8 ralabso 45125 . . . . . . 7 ((Tr 𝑀𝑥𝑀) → (∀𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅) ↔ ∀𝑤𝑀 (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅))))
97, 8ralabsobidv 45129 . . . . . 6 (((Tr 𝑀𝑥𝑀) ∧ 𝑥𝑀) → (∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅) ↔ ∀𝑧𝑀 (𝑧𝑥 → ∀𝑤𝑀 (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅)))))
109anabss3 675 . . . . 5 ((Tr 𝑀𝑥𝑀) → (∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅) ↔ ∀𝑧𝑀 (𝑧𝑥 → ∀𝑤𝑀 (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅)))))
11 r19.21v 3158 . . . . . . . 8 (∀𝑤𝑀 (𝑧𝑥 → (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅))) ↔ (𝑧𝑥 → ∀𝑤𝑀 (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅))))
12 impexp 450 . . . . . . . . . 10 (((𝑧𝑥𝑤𝑥) → (𝑧𝑤 → (𝑧𝑤) = ∅)) ↔ (𝑧𝑥 → (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅))))
13 df-ne 2930 . . . . . . . . . . . . 13 (𝑧𝑤 ↔ ¬ 𝑧 = 𝑤)
1413imbi1i 349 . . . . . . . . . . . 12 ((𝑧𝑤 → (𝑧𝑤) = ∅) ↔ (¬ 𝑧 = 𝑤 → (𝑧𝑤) = ∅))
15 disjabso 45132 . . . . . . . . . . . . 13 ((Tr 𝑀𝑧𝑀) → ((𝑧𝑤) = ∅ ↔ ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))
1615imbi2d 340 . . . . . . . . . . . 12 ((Tr 𝑀𝑧𝑀) → ((¬ 𝑧 = 𝑤 → (𝑧𝑤) = ∅) ↔ (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤))))
1714, 16bitrid 283 . . . . . . . . . . 11 ((Tr 𝑀𝑧𝑀) → ((𝑧𝑤 → (𝑧𝑤) = ∅) ↔ (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤))))
1817imbi2d 340 . . . . . . . . . 10 ((Tr 𝑀𝑧𝑀) → (((𝑧𝑥𝑤𝑥) → (𝑧𝑤 → (𝑧𝑤) = ∅)) ↔ ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))))
1912, 18bitr3id 285 . . . . . . . . 9 ((Tr 𝑀𝑧𝑀) → ((𝑧𝑥 → (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅))) ↔ ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))))
2019ralbidv 3156 . . . . . . . 8 ((Tr 𝑀𝑧𝑀) → (∀𝑤𝑀 (𝑧𝑥 → (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅))) ↔ ∀𝑤𝑀 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))))
2111, 20bitr3id 285 . . . . . . 7 ((Tr 𝑀𝑧𝑀) → ((𝑧𝑥 → ∀𝑤𝑀 (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅))) ↔ ∀𝑤𝑀 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))))
2221ralbidva 3154 . . . . . 6 (Tr 𝑀 → (∀𝑧𝑀 (𝑧𝑥 → ∀𝑤𝑀 (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅))) ↔ ∀𝑧𝑀𝑤𝑀 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))))
2322adantr 480 . . . . 5 ((Tr 𝑀𝑥𝑀) → (∀𝑧𝑀 (𝑧𝑥 → ∀𝑤𝑀 (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅))) ↔ ∀𝑧𝑀𝑤𝑀 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))))
2410, 23bitrd 279 . . . 4 ((Tr 𝑀𝑥𝑀) → (∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅) ↔ ∀𝑧𝑀𝑤𝑀 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))))
256, 24anbi12d 632 . . 3 ((Tr 𝑀𝑥𝑀) → ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) ↔ (∀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀 𝑤𝑧) ∧ ∀𝑧𝑀𝑤𝑀 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤))))))
26 simpl 482 . . . . . 6 ((Tr 𝑀𝑦𝑀) → Tr 𝑀)
27 elin 3914 . . . . . . . . 9 (𝑣 ∈ (𝑧𝑦) ↔ (𝑣𝑧𝑣𝑦))
2827eubii 2582 . . . . . . . 8 (∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∃!𝑣(𝑣𝑧𝑣𝑦))
29 trel 5210 . . . . . . . . . . . 12 (Tr 𝑀 → ((𝑣𝑦𝑦𝑀) → 𝑣𝑀))
3029imp 406 . . . . . . . . . . 11 ((Tr 𝑀 ∧ (𝑣𝑦𝑦𝑀)) → 𝑣𝑀)
3130anass1rs 655 . . . . . . . . . 10 (((Tr 𝑀𝑦𝑀) ∧ 𝑣𝑦) → 𝑣𝑀)
3231adantrl 716 . . . . . . . . 9 (((Tr 𝑀𝑦𝑀) ∧ (𝑣𝑧𝑣𝑦)) → 𝑣𝑀)
3332reueubd 3364 . . . . . . . 8 ((Tr 𝑀𝑦𝑀) → (∃!𝑣𝑀 (𝑣𝑧𝑣𝑦) ↔ ∃!𝑣(𝑣𝑧𝑣𝑦)))
3428, 33bitr4id 290 . . . . . . 7 ((Tr 𝑀𝑦𝑀) → (∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∃!𝑣𝑀 (𝑣𝑧𝑣𝑦)))
35 reu6 3681 . . . . . . 7 (∃!𝑣𝑀 (𝑣𝑧𝑣𝑦) ↔ ∃𝑤𝑀𝑣𝑀 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤))
3634, 35bitrdi 287 . . . . . 6 ((Tr 𝑀𝑦𝑀) → (∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∃𝑤𝑀𝑣𝑀 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))
3726, 36ralabsobidv 45129 . . . . 5 (((Tr 𝑀𝑦𝑀) ∧ 𝑥𝑀) → (∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀𝑣𝑀 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤))))
3837an32s 652 . . . 4 (((Tr 𝑀𝑥𝑀) ∧ 𝑦𝑀) → (∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀𝑣𝑀 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤))))
3938rexbidva 3155 . . 3 ((Tr 𝑀𝑥𝑀) → (∃𝑦𝑀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∃𝑦𝑀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀𝑣𝑀 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤))))
4025, 39imbi12d 344 . 2 ((Tr 𝑀𝑥𝑀) → (((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ((∀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀 𝑤𝑧) ∧ ∀𝑧𝑀𝑤𝑀 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀𝑣𝑀 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))))
4140ralbidva 3154 1 (Tr 𝑀 → (∀𝑥𝑀 ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∀𝑥𝑀 ((∀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀 𝑤𝑧) ∧ ∀𝑧𝑀𝑤𝑀 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀𝑣𝑀 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  ∃!weu 2565  wne 2929  wral 3048  wrex 3057  ∃!wreu 3345  cin 3897  c0 4282  Tr wtr 5202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-v 3439  df-dif 3901  df-in 3905  df-ss 3915  df-nul 4283  df-uni 4861  df-tr 5203
This theorem is referenced by:  wfac8prim  45159
  Copyright terms: Public domain W3C validator