Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modelac8prim Structured version   Visualization version   GIF version

Theorem modelac8prim 44986
Description: If 𝑀 is a transitive class, then the following are equivalent. (1) Every nonempty set 𝑥𝑀 of pairwise disjoint nonempty sets has a choice set in 𝑀. (2) The class 𝑀 models the Axiom of Choice, in the form ac8prim 44985.

Lemma II.2.11(7) of [Kunen2] p. 114. Kunen has the additional hypotheses that the Extensionality, Separation, Pairing, and Union axioms are true in 𝑀. This, apparently, is because Kunen's statement of the Axiom of Choice uses defined notions, including and , and these axioms guarantee that these notions are well-defined. When we state the axiom using primitives only, the need for these hypotheses disappears. (Contributed by Eric Schmidt, 19-Oct-2025.)

Assertion
Ref Expression
modelac8prim (Tr 𝑀 → (∀𝑥𝑀 ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∀𝑥𝑀 ((∀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀 𝑤𝑧) ∧ ∀𝑧𝑀𝑤𝑀 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀𝑣𝑀 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))))
Distinct variable group:   𝑥,𝑧,𝑦,𝑤,𝑣,𝑀

Proof of Theorem modelac8prim
StepHypRef Expression
1 ralabso 44962 . . . . 5 ((Tr 𝑀𝑥𝑀) → (∀𝑧𝑥 𝑧 ≠ ∅ ↔ ∀𝑧𝑀 (𝑧𝑥𝑧 ≠ ∅)))
2 n0abso 44970 . . . . . . . 8 ((Tr 𝑀𝑧𝑀) → (𝑧 ≠ ∅ ↔ ∃𝑤𝑀 𝑤𝑧))
32adantlr 715 . . . . . . 7 (((Tr 𝑀𝑥𝑀) ∧ 𝑧𝑀) → (𝑧 ≠ ∅ ↔ ∃𝑤𝑀 𝑤𝑧))
43imbi2d 340 . . . . . 6 (((Tr 𝑀𝑥𝑀) ∧ 𝑧𝑀) → ((𝑧𝑥𝑧 ≠ ∅) ↔ (𝑧𝑥 → ∃𝑤𝑀 𝑤𝑧)))
54ralbidva 3150 . . . . 5 ((Tr 𝑀𝑥𝑀) → (∀𝑧𝑀 (𝑧𝑥𝑧 ≠ ∅) ↔ ∀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀 𝑤𝑧)))
61, 5bitrd 279 . . . 4 ((Tr 𝑀𝑥𝑀) → (∀𝑧𝑥 𝑧 ≠ ∅ ↔ ∀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀 𝑤𝑧)))
7 simpl 482 . . . . . . 7 ((Tr 𝑀𝑥𝑀) → Tr 𝑀)
8 ralabso 44962 . . . . . . 7 ((Tr 𝑀𝑥𝑀) → (∀𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅) ↔ ∀𝑤𝑀 (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅))))
97, 8ralabsobidv 44966 . . . . . 6 (((Tr 𝑀𝑥𝑀) ∧ 𝑥𝑀) → (∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅) ↔ ∀𝑧𝑀 (𝑧𝑥 → ∀𝑤𝑀 (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅)))))
109anabss3 675 . . . . 5 ((Tr 𝑀𝑥𝑀) → (∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅) ↔ ∀𝑧𝑀 (𝑧𝑥 → ∀𝑤𝑀 (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅)))))
11 r19.21v 3154 . . . . . . . 8 (∀𝑤𝑀 (𝑧𝑥 → (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅))) ↔ (𝑧𝑥 → ∀𝑤𝑀 (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅))))
12 impexp 450 . . . . . . . . . 10 (((𝑧𝑥𝑤𝑥) → (𝑧𝑤 → (𝑧𝑤) = ∅)) ↔ (𝑧𝑥 → (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅))))
13 df-ne 2926 . . . . . . . . . . . . 13 (𝑧𝑤 ↔ ¬ 𝑧 = 𝑤)
1413imbi1i 349 . . . . . . . . . . . 12 ((𝑧𝑤 → (𝑧𝑤) = ∅) ↔ (¬ 𝑧 = 𝑤 → (𝑧𝑤) = ∅))
15 disjabso 44969 . . . . . . . . . . . . 13 ((Tr 𝑀𝑧𝑀) → ((𝑧𝑤) = ∅ ↔ ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))
1615imbi2d 340 . . . . . . . . . . . 12 ((Tr 𝑀𝑧𝑀) → ((¬ 𝑧 = 𝑤 → (𝑧𝑤) = ∅) ↔ (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤))))
1714, 16bitrid 283 . . . . . . . . . . 11 ((Tr 𝑀𝑧𝑀) → ((𝑧𝑤 → (𝑧𝑤) = ∅) ↔ (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤))))
1817imbi2d 340 . . . . . . . . . 10 ((Tr 𝑀𝑧𝑀) → (((𝑧𝑥𝑤𝑥) → (𝑧𝑤 → (𝑧𝑤) = ∅)) ↔ ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))))
1912, 18bitr3id 285 . . . . . . . . 9 ((Tr 𝑀𝑧𝑀) → ((𝑧𝑥 → (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅))) ↔ ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))))
2019ralbidv 3152 . . . . . . . 8 ((Tr 𝑀𝑧𝑀) → (∀𝑤𝑀 (𝑧𝑥 → (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅))) ↔ ∀𝑤𝑀 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))))
2111, 20bitr3id 285 . . . . . . 7 ((Tr 𝑀𝑧𝑀) → ((𝑧𝑥 → ∀𝑤𝑀 (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅))) ↔ ∀𝑤𝑀 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))))
2221ralbidva 3150 . . . . . 6 (Tr 𝑀 → (∀𝑧𝑀 (𝑧𝑥 → ∀𝑤𝑀 (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅))) ↔ ∀𝑧𝑀𝑤𝑀 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))))
2322adantr 480 . . . . 5 ((Tr 𝑀𝑥𝑀) → (∀𝑧𝑀 (𝑧𝑥 → ∀𝑤𝑀 (𝑤𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅))) ↔ ∀𝑧𝑀𝑤𝑀 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))))
2410, 23bitrd 279 . . . 4 ((Tr 𝑀𝑥𝑀) → (∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅) ↔ ∀𝑧𝑀𝑤𝑀 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))))
256, 24anbi12d 632 . . 3 ((Tr 𝑀𝑥𝑀) → ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) ↔ (∀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀 𝑤𝑧) ∧ ∀𝑧𝑀𝑤𝑀 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤))))))
26 simpl 482 . . . . . 6 ((Tr 𝑀𝑦𝑀) → Tr 𝑀)
27 elin 3921 . . . . . . . . 9 (𝑣 ∈ (𝑧𝑦) ↔ (𝑣𝑧𝑣𝑦))
2827eubii 2578 . . . . . . . 8 (∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∃!𝑣(𝑣𝑧𝑣𝑦))
29 trel 5210 . . . . . . . . . . . 12 (Tr 𝑀 → ((𝑣𝑦𝑦𝑀) → 𝑣𝑀))
3029imp 406 . . . . . . . . . . 11 ((Tr 𝑀 ∧ (𝑣𝑦𝑦𝑀)) → 𝑣𝑀)
3130anass1rs 655 . . . . . . . . . 10 (((Tr 𝑀𝑦𝑀) ∧ 𝑣𝑦) → 𝑣𝑀)
3231adantrl 716 . . . . . . . . 9 (((Tr 𝑀𝑦𝑀) ∧ (𝑣𝑧𝑣𝑦)) → 𝑣𝑀)
3332reueubd 3364 . . . . . . . 8 ((Tr 𝑀𝑦𝑀) → (∃!𝑣𝑀 (𝑣𝑧𝑣𝑦) ↔ ∃!𝑣(𝑣𝑧𝑣𝑦)))
3428, 33bitr4id 290 . . . . . . 7 ((Tr 𝑀𝑦𝑀) → (∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∃!𝑣𝑀 (𝑣𝑧𝑣𝑦)))
35 reu6 3688 . . . . . . 7 (∃!𝑣𝑀 (𝑣𝑧𝑣𝑦) ↔ ∃𝑤𝑀𝑣𝑀 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤))
3634, 35bitrdi 287 . . . . . 6 ((Tr 𝑀𝑦𝑀) → (∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∃𝑤𝑀𝑣𝑀 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))
3726, 36ralabsobidv 44966 . . . . 5 (((Tr 𝑀𝑦𝑀) ∧ 𝑥𝑀) → (∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀𝑣𝑀 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤))))
3837an32s 652 . . . 4 (((Tr 𝑀𝑥𝑀) ∧ 𝑦𝑀) → (∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀𝑣𝑀 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤))))
3938rexbidva 3151 . . 3 ((Tr 𝑀𝑥𝑀) → (∃𝑦𝑀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∃𝑦𝑀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀𝑣𝑀 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤))))
4025, 39imbi12d 344 . 2 ((Tr 𝑀𝑥𝑀) → (((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ((∀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀 𝑤𝑧) ∧ ∀𝑧𝑀𝑤𝑀 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀𝑣𝑀 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))))
4140ralbidva 3150 1 (Tr 𝑀 → (∀𝑥𝑀 ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∀𝑥𝑀 ((∀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀 𝑤𝑧) ∧ ∀𝑧𝑀𝑤𝑀 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑀 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑥 → ∃𝑤𝑀𝑣𝑀 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃!weu 2561  wne 2925  wral 3044  wrex 3053  ∃!wreu 3343  cin 3904  c0 4286  Tr wtr 5202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-v 3440  df-dif 3908  df-in 3912  df-ss 3922  df-nul 4287  df-uni 4862  df-tr 5203
This theorem is referenced by:  wfac8prim  44996
  Copyright terms: Public domain W3C validator