![]() |
Metamath
Proof Explorer Theorem List (p. 453 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30158) |
![]() (30159-31681) |
![]() (31682-47805) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | omedm 45201 | The domain of an outer measure is a power set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β OutMeas β dom π = π« βͺ dom π) | ||
Theorem | caragensplit 45202 | If πΈ is in the set generated by the Caratheodory's method, then it splits any set π΄ in two parts such that the sum of the outer measures of the two parts is equal to the outer measure of the whole set π΄. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = (CaraGenβπ) & β’ π = βͺ dom π & β’ (π β πΈ β π) & β’ (π β π΄ β π) β β’ (π β ((πβ(π΄ β© πΈ)) +π (πβ(π΄ β πΈ))) = (πβπ΄)) | ||
Theorem | caragenelss 45203 | An element of the Caratheodory's construction is a subset of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = (CaraGenβπ) & β’ (π β π΄ β π) & β’ π = βͺ dom π β β’ (π β π΄ β π) | ||
Theorem | carageneld 45204* | Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = βͺ dom π & β’ π = (CaraGenβπ) & β’ (π β πΈ β π« π) & β’ ((π β§ π β π« π) β ((πβ(π β© πΈ)) +π (πβ(π β πΈ))) = (πβπ)) β β’ (π β πΈ β π) | ||
Theorem | omecl 45205 | The outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = βͺ dom π & β’ (π β π΄ β π) β β’ (π β (πβπ΄) β (0[,]+β)) | ||
Theorem | caragenss 45206 | The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the domain of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ π = (CaraGenβπ) β β’ (π β OutMeas β π β dom π) | ||
Theorem | omeunile 45207 | The outer measure of the union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = βͺ dom π & β’ (π β π β π« π) & β’ (π β π βΌ Ο) β β’ (π β (πββͺ π) β€ (Ξ£^β(π βΎ π))) | ||
Theorem | caragen0 45208 | The empty set belongs to any Caratheodory's construction. First part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = (CaraGenβπ) β β’ (π β β β π) | ||
Theorem | omexrcl 45209 | The outer measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = βͺ dom π & β’ (π β π΄ β π) β β’ (π β (πβπ΄) β β*) | ||
Theorem | caragenunidm 45210 | The base set of an outer measure belongs to the sigma-algebra generated by the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = βͺ dom π & β’ π = (CaraGenβπ) β β’ (π β π β π) | ||
Theorem | caragensspw 45211 | The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the power set of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = βͺ dom π & β’ π = (CaraGenβπ) β β’ (π β π β π« π) | ||
Theorem | omessre 45212 | If the outer measure of a set is real, then the outer measure of any of its subset is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = βͺ dom π & β’ (π β π΄ β π) & β’ (π β (πβπ΄) β β) & β’ (π β π΅ β π΄) β β’ (π β (πβπ΅) β β) | ||
Theorem | caragenuni 45213 | The base set of the sigma-algebra generated by the Caratheodory's construction is the whole base set of the original outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = (CaraGenβπ) β β’ (π β βͺ π = βͺ dom π) | ||
Theorem | caragenuncllem 45214 | The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = (CaraGenβπ) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ π = βͺ dom π & β’ (π β π΄ β π) β β’ (π β ((πβ(π΄ β© (πΈ βͺ πΉ))) +π (πβ(π΄ β (πΈ βͺ πΉ)))) = (πβπ΄)) | ||
Theorem | caragenuncl 45215 | The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = (CaraGenβπ) & β’ (π β πΈ β π) & β’ (π β πΉ β π) β β’ (π β (πΈ βͺ πΉ) β π) | ||
Theorem | caragendifcl 45216 | The Caratheodory's construction is closed under the complement operation. Second part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = (CaraGenβπ) & β’ (π β πΈ β π) β β’ (π β (βͺ π β πΈ) β π) | ||
Theorem | caragenfiiuncl 45217* | The Caratheodory's construction is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ β²ππ & β’ (π β π β OutMeas) & β’ π = (CaraGenβπ) & β’ (π β π΄ β Fin) & β’ ((π β§ π β π΄) β π΅ β π) β β’ (π β βͺ π β π΄ π΅ β π) | ||
Theorem | omeunle 45218 | The outer measure of the union of two sets is less than or equal to the sum of the measures, Remark 113B (c) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = βͺ dom π & β’ (π β π΄ β π) & β’ (π β π΅ β π) β β’ (π β (πβ(π΄ βͺ π΅)) β€ ((πβπ΄) +π (πβπ΅))) | ||
Theorem | omeiunle 45219* | The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ β²ππ & β’ β²ππΈ & β’ (π β π β OutMeas) & β’ π = βͺ dom π & β’ π = (β€β₯βπ) & β’ (π β πΈ:πβΆπ« π) β β’ (π β (πββͺ π β π (πΈβπ)) β€ (Ξ£^β(π β π β¦ (πβ(πΈβπ))))) | ||
Theorem | omelesplit 45220 | The outer measure of a set π΄ is less than or equal to the extended addition of the outer measures of the decomposition induced on π΄ by any πΈ. Step (a) in the proof of Caratheodory's Method, Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = βͺ dom π & β’ (π β π΄ β π) β β’ (π β (πβπ΄) β€ ((πβ(π΄ β© πΈ)) +π (πβ(π΄ β πΈ)))) | ||
Theorem | omeiunltfirp 45221* | If the outer measure of a countable union is not +β, then it can be arbitrarily approximated by finite sums of outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = βͺ dom π & β’ π = (β€β₯βπ) & β’ (π β πΈ:πβΆπ« π) & β’ (π β (πββͺ π β π (πΈβπ)) β β) & β’ (π β π β β+) β β’ (π β βπ§ β (π« π β© Fin)(πββͺ π β π (πΈβπ)) < (Ξ£π β π§ (πβ(πΈβπ)) + π)) | ||
Theorem | omeiunlempt 45222* | The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ β²ππ & β’ (π β π β OutMeas) & β’ π = βͺ dom π & β’ π = (β€β₯βπ) & β’ ((π β§ π β π) β πΈ β π) β β’ (π β (πββͺ π β π πΈ) β€ (Ξ£^β(π β π β¦ (πβπΈ)))) | ||
Theorem | carageniuncllem1 45223* | The outer measure of π΄ β© (πΊβπ) is the sum of the outer measures of π΄ β© (πΉβπ). These are lines 7 to 10 of Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = (CaraGenβπ) & β’ π = βͺ dom π & β’ (π β π΄ β π) & β’ (π β (πβπ΄) β β) & β’ π = (β€β₯βπ) & β’ (π β πΈ:πβΆπ) & β’ πΊ = (π β π β¦ βͺ π β (π...π)(πΈβπ)) & β’ πΉ = (π β π β¦ ((πΈβπ) β βͺ π β (π..^π)(πΈβπ))) & β’ (π β πΎ β π) β β’ (π β Ξ£π β (π...πΎ)(πβ(π΄ β© (πΉβπ))) = (πβ(π΄ β© (πΊβπΎ)))) | ||
Theorem | carageniuncllem2 45224* | The Caratheodory's construction is closed under countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = (CaraGenβπ) & β’ π = βͺ dom π & β’ (π β π΄ β π) & β’ (π β (πβπ΄) β β) & β’ (π β π β β€) & β’ π = (β€β₯βπ) & β’ (π β πΈ:πβΆπ) & β’ (π β π β β+) & β’ πΊ = (π β π β¦ βͺ π β (π...π)(πΈβπ)) & β’ πΉ = (π β π β¦ ((πΈβπ) β βͺ π β (π..^π)(πΈβπ))) β β’ (π β ((πβ(π΄ β© βͺ π β π (πΈβπ))) +π (πβ(π΄ β βͺ π β π (πΈβπ)))) β€ ((πβπ΄) + π)) | ||
Theorem | carageniuncl 45225* | The Caratheodory's construction is closed under indexed countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = (CaraGenβπ) & β’ (π β π β β€) & β’ π = (β€β₯βπ) & β’ (π β πΈ:πβΆπ) β β’ (π β βͺ π β π (πΈβπ) β π) | ||
Theorem | caragenunicl 45226 | The Caratheodory's construction is closed under countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = (CaraGenβπ) & β’ (π β π β π) & β’ (π β π βΌ Ο) β β’ (π β βͺ π β π) | ||
Theorem | caragensal 45227 | Caratheodory's method generates a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = (CaraGenβπ) β β’ (π β π β SAlg) | ||
Theorem | caratheodorylem1 45228* | Lemma used to prove that Caratheodory's construction is sigma-additive. This is the proof of the statement in the middle of Step (e) in the proof of Theorem 113C of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = (CaraGenβπ) & β’ π = (β€β₯βπ) & β’ (π β πΈ:πβΆπ) & β’ (π β Disj π β π (πΈβπ)) & β’ πΊ = (π β π β¦ βͺ π β (π...π)(πΈβπ)) & β’ (π β π β (β€β₯βπ)) β β’ (π β (πβ(πΊβπ)) = (Ξ£^β(π β (π...π) β¦ (πβ(πΈβπ))))) | ||
Theorem | caratheodorylem2 45229* | Caratheodory's construction is sigma-additive. Main part of Step (e) in the proof of Theorem 113C of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = βͺ dom π & β’ π = (CaraGenβπ) & β’ (π β πΈ:ββΆπ) & β’ (π β Disj π β β (πΈβπ)) & β’ πΊ = (π β β β¦ βͺ π β (1...π)(πΈβπ)) β β’ (π β (πββͺ π β β (πΈβπ)) = (Ξ£^β(π β β β¦ (πβ(πΈβπ))))) | ||
Theorem | caratheodory 45230 | Caratheodory's construction of a measure given an outer measure. Proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
β’ (π β π β OutMeas) & β’ π = (CaraGenβπ) β β’ (π β (π βΎ π) β Meas) | ||
Theorem | 0ome 45231* | The map that assigns 0 to every subset, is an outer measure. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β π) & β’ π = (π₯ β π« π β¦ 0) β β’ (π β π β OutMeas) | ||
Theorem | isomenndlem 45232* | π is sub-additive w.r.t. countable indexed union, implies that π is sub-additive w.r.t. countable union. Thus, the definition of Outer Measure can be given using an indexed union. Definition 113A of [Fremlin1] p. 19 . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π:π« πβΆ(0[,]+β)) & β’ (π β (πββ ) = 0) & β’ (π β π β π« π) & β’ ((π β§ π:ββΆπ« π) β (πββͺ π β β (πβπ)) β€ (Ξ£^β(π β β β¦ (πβ(πβπ))))) & β’ (π β π΅ β β) & β’ (π β πΉ:π΅β1-1-ontoβπ) & β’ π΄ = (π β β β¦ if(π β π΅, (πΉβπ), β )) β β’ (π β (πββͺ π) β€ (Ξ£^β(π βΎ π))) | ||
Theorem | isomennd 45233* | Sufficient condition to prove that π is an outer measure. Definition 113A of [Fremlin1] p. 19 . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β π) & β’ (π β π:π« πβΆ(0[,]+β)) & β’ (π β (πββ ) = 0) & β’ ((π β§ π₯ β π β§ π¦ β π₯) β (πβπ¦) β€ (πβπ₯)) & β’ ((π β§ π:ββΆπ« π) β (πββͺ π β β (πβπ)) β€ (Ξ£^β(π β β β¦ (πβ(πβπ))))) β β’ (π β π β OutMeas) | ||
Theorem | caragenel2d 45234* | Membership in the Caratheodory's construction. Similar to carageneld 45204, but here "less then or equal to" is used, instead of equality. This is Remark 113D of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ (π β π β OutMeas) & β’ π = βͺ dom π & β’ π = (CaraGenβπ) & β’ (π β πΈ β π« π) & β’ ((π β§ π β π« π) β ((πβ(π β© πΈ)) +π (πβ(π β πΈ))) β€ (πβπ)) β β’ (π β πΈ β π) | ||
Theorem | omege0 45235 | If the outer measure of a set is greater than or equal to 0. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ (π β π β OutMeas) & β’ π = βͺ dom π & β’ (π β π΄ β π) β β’ (π β 0 β€ (πβπ΄)) | ||
Theorem | omess0 45236 | If the outer measure of a set is 0, then the outer measure of its subsets is 0. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ (π β π β OutMeas) & β’ π = βͺ dom π & β’ (π β π΄ β π) & β’ (π β (πβπ΄) = 0) & β’ (π β π΅ β π΄) β β’ (π β (πβπ΅) = 0) | ||
Theorem | caragencmpl 45237 | A measure built with the Caratheodory's construction is complete. See Definition 112Df of [Fremlin1] p. 19. This is Exercise 113Xa of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ (π β π β OutMeas) & β’ π = βͺ dom π & β’ (π β πΈ β π) & β’ (π β (πβπΈ) = 0) & β’ π = (CaraGenβπ) β β’ (π β πΈ β π) | ||
Proofs for most of the theorems in section 115 of [Fremlin1] | ||
Syntax | covoln 45238 | Extend class notation with the class of Lebesgue outer measure for the space of multidimensional real numbers. |
class voln* | ||
Definition | df-ovoln 45239* | Define the outer measure for the space of multidimensional real numbers. The cardinality of π₯ is the dimension of the space modeled. Definition 115C of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ voln* = (π₯ β Fin β¦ (π¦ β π« (β βm π₯) β¦ if(π₯ = β , 0, inf({π§ β β* β£ βπ β (((β Γ β) βm π₯) βm β)(π¦ β βͺ π β β Xπ β π₯ (([,) β (πβπ))βπ) β§ π§ = (Ξ£^β(π β β β¦ βπ β π₯ (volβ(([,) β (πβπ))βπ)))))}, β*, < )))) | ||
Syntax | cvoln 45240 | Extend class notation with the class of Lebesgue measure for the space of multidimensional real numbers. |
class voln | ||
Definition | df-voln 45241 | Define the Lebesgue measure for the space of multidimensional real numbers. The cardinality of π₯ is the dimension of the space modeled. Definition 115C of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ voln = (π₯ β Fin β¦ ((voln*βπ₯) βΎ (CaraGenβ(voln*βπ₯)))) | ||
Theorem | vonval 45242 | Value of the Lebesgue measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) β β’ (π β (volnβπ) = ((voln*βπ) βΎ (CaraGenβ(voln*βπ)))) | ||
Theorem | ovnval 45243* | Value of the Lebesgue outer measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) β β’ (π β (voln*βπ) = (π¦ β π« (β βm π) β¦ if(π = β , 0, inf({π§ β β* β£ βπ β (((β Γ β) βm π) βm β)(π¦ β βͺ π β β Xπ β π (([,) β (πβπ))βπ) β§ π§ = (Ξ£^β(π β β β¦ βπ β π (volβ(([,) β (πβπ))βπ)))))}, β*, < )))) | ||
Theorem | elhoi 45244* | Membership in a multidimensional half-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β π) β β’ (π β (π β ((π΄[,)π΅) βm π) β (π:πβΆβ* β§ βπ₯ β π (πβπ₯) β (π΄[,)π΅)))) | ||
Theorem | icoresmbl 45245 | A closed-below, open-above real interval is measurable, when the bounds are real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ ran ([,) βΎ (β Γ β)) β dom vol | ||
Theorem | hoissre 45246* | The projection of a half-open interval onto a single dimension is a subset of β. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β πΌ:πβΆ(β Γ β)) β β’ ((π β§ π β π) β (([,) β πΌ)βπ) β β) | ||
Theorem | ovnval2 45247* | Value of the Lebesgue outer measure of a subset π΄ of the space of multidimensional real numbers. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) & β’ (π β π΄ β (β βm π)) & β’ π = {π§ β β* β£ βπ β (((β Γ β) βm π) βm β)(π΄ β βͺ π β β Xπ β π (([,) β (πβπ))βπ) β§ π§ = (Ξ£^β(π β β β¦ βπ β π (volβ(([,) β (πβπ))βπ)))))} β β’ (π β ((voln*βπ)βπ΄) = if(π = β , 0, inf(π, β*, < ))) | ||
Theorem | volicorecl 45248 | The Lebesgue measure of a left-closed, right-open interval with real bounds, is real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ ((π΄ β β β§ π΅ β β) β (volβ(π΄[,)π΅)) β β) | ||
Theorem | hoiprodcl 45249* | The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ β²ππ & β’ (π β π β Fin) & β’ (π β πΌ:πβΆ(β Γ β)) β β’ (π β βπ β π (volβ(([,) β πΌ)βπ)) β (0[,)+β)) | ||
Theorem | hoicvr 45250* | πΌ is a countable set of half-open intervals that covers the whole multidimensional reals. See Definition 1135 (b) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ πΌ = (π β β β¦ (π₯ β π β¦ β¨-π, πβ©)) & β’ (π β π β Fin) β β’ (π β (β βm π) β βͺ π β β Xπ β π (([,) β (πΌβπ))βπ)) | ||
Theorem | hoissrrn 45251* | A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β πΌ:πβΆ(β Γ β)) β β’ (π β Xπ β π (([,) β πΌ)βπ) β (β βm π)) | ||
Theorem | ovn0val 45252 | The Lebesgue outer measure (for the zero dimensional space of reals) of every subset is zero. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π΄ β (β βm β )) β β’ (π β ((voln*ββ )βπ΄) = 0) | ||
Theorem | ovnn0val 45253* | The value of a (multidimensional) Lebesgue outer measure, defined on a nonzero-dimensional space of reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) & β’ (π β π β β ) & β’ (π β π΄ β (β βm π)) & β’ π = {π§ β β* β£ βπ β (((β Γ β) βm π) βm β)(π΄ β βͺ π β β Xπ β π (([,) β (πβπ))βπ) β§ π§ = (Ξ£^β(π β β β¦ βπ β π (volβ(([,) β (πβπ))βπ)))))} β β’ (π β ((voln*βπ)βπ΄) = inf(π, β*, < )) | ||
Theorem | ovnval2b 45254* | Value of the Lebesgue outer measure of a subset π΄ of the space of multidimensional real numbers. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) & β’ (π β π΄ β (β βm π)) & β’ πΏ = (π β π« (β βm π) β¦ {π§ β β* β£ βπ β (((β Γ β) βm π) βm β)(π β βͺ π β β Xπ β π (([,) β (πβπ))βπ) β§ π§ = (Ξ£^β(π β β β¦ βπ β π (volβ(([,) β (πβπ))βπ)))))}) β β’ (π β ((voln*βπ)βπ΄) = if(π = β , 0, inf((πΏβπ΄), β*, < ))) | ||
Theorem | volicorescl 45255 | The Lebesgue measure of a left-closed, right-open interval with real bounds, is real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π΄ β ran ([,) βΎ (β Γ β)) β (volβπ΄) β β) | ||
Theorem | ovnprodcl 45256* | The product used in the definition of the outer Lebesgue measure in R^n is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ β²ππ & β’ (π β π β Fin) & β’ (π β πΉ:ββΆ((β Γ β) βm π)) & β’ (π β πΌ β β) β β’ (π β βπ β π (volβ(([,) β (πΉβπΌ))βπ)) β (0[,)+β)) | ||
Theorem | hoiprodcl2 45257* | The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ β²ππ & β’ (π β π β Fin) & β’ πΏ = (π β ((β Γ β) βm π) β¦ βπ β π (volβ(([,) β π)βπ))) & β’ (π β πΌ:πβΆ(β Γ β)) β β’ (π β (πΏβπΌ) β (0[,)+β)) | ||
Theorem | hoicvrrex 45258* | Any subset of the multidimensional reals can be covered by a countable set of half-open intervals, see Definition 115A (b) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) & β’ (π β π β (β βm π)) β β’ (π β βπ β (((β Γ β) βm π) βm β)(π β βͺ π β β Xπ β π (([,) β (πβπ))βπ) β§ +β = (Ξ£^β(π β β β¦ βπ β π (volβ(([,) β (πβπ))βπ)))))) | ||
Theorem | ovnsupge0 45259* | The set used in the definition of the Lebesgue outer measure is a subset of the nonnegative extended reals. This is a substep for (a)(i) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) & β’ (π β π΄ β (β βm π)) & β’ π = {π§ β β* β£ βπ β (((β Γ β) βm π) βm β)(π΄ β βͺ π β β Xπ β π (([,) β (πβπ))βπ) β§ π§ = (Ξ£^β(π β β β¦ βπ β π (volβ(([,) β (πβπ))βπ)))))} β β’ (π β π β (0[,]+β)) | ||
Theorem | ovnlecvr 45260* | Given a subset of multidimensional reals and a set of half-open intervals that covers it, the Lebesgue outer measure of the set is bounded by the generalized sum of the pre-measure of the half-open intervals. The statement would also be true with π the empty set, but covers are not used for the zero-dimensional case. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) & β’ (π β π β β ) & β’ πΏ = (π β ((β Γ β) βm π) β¦ βπ β π (volβ(([,) β π)βπ))) & β’ (π β πΌ:ββΆ((β Γ β) βm π)) & β’ (π β π΄ β βͺ π β β Xπ β π (([,) β (πΌβπ))βπ)) β β’ (π β ((voln*βπ)βπ΄) β€ (Ξ£^β(π β β β¦ (πΏβ(πΌβπ))))) | ||
Theorem | ovnpnfelsup 45261* | +β is an element of the set used in the definition of the Lebesgue outer measure. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) & β’ (π β π΄ β (β βm π)) & β’ π = {π§ β β* β£ βπ β (((β Γ β) βm π) βm β)(π΄ β βͺ π β β Xπ β π (([,) β (πβπ))βπ) β§ π§ = (Ξ£^β(π β β β¦ βπ β π (volβ(([,) β (πβπ))βπ)))))} β β’ (π β +β β π) | ||
Theorem | ovnsslelem 45262* | The (multidimensional, nonzero-dimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) & β’ (π β π β β ) & β’ (π β π΄ β π΅) & β’ (π β π΅ β (β βm π)) & β’ π = {π§ β β* β£ βπ β (((β Γ β) βm π) βm β)(π΄ β βͺ π β β Xπ β π (([,) β (πβπ))βπ) β§ π§ = (Ξ£^β(π β β β¦ βπ β π (volβ(([,) β (πβπ))βπ)))))} & β’ π = {π§ β β* β£ βπ β (((β Γ β) βm π) βm β)(π΅ β βͺ π β β Xπ β π (([,) β (πβπ))βπ) β§ π§ = (Ξ£^β(π β β β¦ βπ β π (volβ(([,) β (πβπ))βπ)))))} β β’ (π β ((voln*βπ)βπ΄) β€ ((voln*βπ)βπ΅)) | ||
Theorem | ovnssle 45263 | The (multidimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) & β’ (π β π΄ β π΅) & β’ (π β π΅ β (β βm π)) β β’ (π β ((voln*βπ)βπ΄) β€ ((voln*βπ)βπ΅)) | ||
Theorem | ovnlerp 45264* | The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) & β’ (π β π β β ) & β’ (π β π΄ β (β βm π)) & β’ (π β πΈ β β+) & β’ π = {π§ β β* β£ βπ β (((β Γ β) βm π) βm β)(π΄ β βͺ π β β Xπ β π (([,) β (πβπ))βπ) β§ π§ = (Ξ£^β(π β β β¦ βπ β π (volβ(([,) β (πβπ))βπ)))))} β β’ (π β βπ§ β π π§ β€ (((voln*βπ)βπ΄) +π πΈ)) | ||
Theorem | ovnf 45265 | The Lebesgue outer measure is a function that maps sets to nonnegative extended reals. This is step (a)(i) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) β β’ (π β (voln*βπ):π« (β βm π)βΆ(0[,]+β)) | ||
Theorem | ovncvrrp 45266* | The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) & β’ (π β π β β ) & β’ (π β π΄ β (β βm π)) & β’ (π β πΈ β β+) & β’ πΆ = (π β π« (β βm π) β¦ {π β (((β Γ β) βm π) βm β) β£ π β βͺ π β β Xπ β π (([,) β (πβπ))βπ)}) & β’ πΏ = (β β ((β Γ β) βm π) β¦ βπ β π (volβ(([,) β β)βπ))) & β’ π· = (π β π« (β βm π) β¦ (π β β+ β¦ {π β (πΆβπ) β£ (Ξ£^β(π β β β¦ (πΏβ(πβπ)))) β€ (((voln*βπ)βπ) +π π)})) β β’ (π β βπ π β ((π·βπ΄)βπΈ)) | ||
Theorem | ovn0lem 45267* | For any finite dimension, the Lebesgue outer measure of the empty set is zero. This is step (a)(ii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) & β’ (π β π β β ) & β’ π = {π§ β β* β£ βπ β (((β Γ β) βm π) βm β)π§ = (Ξ£^β(π β β β¦ βπ β π (volβ(([,) β (πβπ))βπ))))} & β’ (π β inf(π, β*, < ) β (0[,]+β)) & β’ πΌ = (π β β β¦ (π β π β¦ β¨1, 0β©)) β β’ (π β inf(π, β*, < ) = 0) | ||
Theorem | ovn0 45268 | For any finite dimension, the Lebesgue outer measure of the empty set is zero. This is step (ii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) β β’ (π β ((voln*βπ)ββ ) = 0) | ||
Theorem | ovncl 45269 | The Lebesgue outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) & β’ (π β π΄ β (β βm π)) β β’ (π β ((voln*βπ)βπ΄) β (0[,]+β)) | ||
Theorem | ovn02 45270 | For the zero-dimensional space, voln* assigns zero to every subset. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (voln*ββ ) = (π₯ β π« {β } β¦ 0) | ||
Theorem | ovnxrcl 45271 | The Lebesgue outer measure of a set is an extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) & β’ (π β π΄ β (β βm π)) β β’ (π β ((voln*βπ)βπ΄) β β*) | ||
Theorem | ovnsubaddlem1 45272* | The Lebesgue outer measure is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) & β’ (π β π β β ) & β’ (π β π΄:ββΆπ« (β βm π)) & β’ (π β πΈ β β+) & β’ π = (π β π« (β βm π) β¦ {π§ β β* β£ βπ β (((β Γ β) βm π) βm β)(π β βͺ π β β Xπ β π (([,) β (πβπ))βπ) β§ π§ = (Ξ£^β(π β β β¦ βπ β π (volβ(([,) β (πβπ))βπ)))))}) & β’ πΆ = (π β π« (β βm π) β¦ {β β (((β Γ β) βm π) βm β) β£ π β βͺ π β β Xπ β π (([,) β (ββπ))βπ)}) & β’ πΏ = (π β ((β Γ β) βm π) β¦ βπ β π (volβ(([,) β π)βπ))) & β’ π· = (π β π« (β βm π) β¦ (π β β+ β¦ {π β (πΆβπ) β£ (Ξ£^β(π β β β¦ (πΏβ(πβπ)))) β€ (((voln*βπ)βπ) +π π)})) & β’ ((π β§ π β β) β (πΌβπ) β ((π·β(π΄βπ))β(πΈ / (2βπ)))) & β’ (π β πΉ:ββ1-1-ontoβ(β Γ β)) & β’ πΊ = (π β β β¦ ((πΌβ(1st β(πΉβπ)))β(2nd β(πΉβπ)))) β β’ (π β ((voln*βπ)ββͺ π β β (π΄βπ)) β€ ((Ξ£^β(π β β β¦ ((voln*βπ)β(π΄βπ)))) +π πΈ)) | ||
Theorem | ovnsubaddlem2 45273* | (voln*βπ) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) & β’ (π β π β β ) & β’ (π β π΄:ββΆπ« (β βm π)) & β’ (π β πΈ β β+) & β’ π = (π β π« (β βm π) β¦ {π§ β β* β£ βπ β (((β Γ β) βm π) βm β)(π β βͺ π β β Xπ β π (([,) β (πβπ))βπ) β§ π§ = (Ξ£^β(π β β β¦ βπ β π (volβ(([,) β (πβπ))βπ)))))}) & β’ πΆ = (π β π« (β βm π) β¦ {π β (((β Γ β) βm π) βm β) β£ π β βͺ π β β Xπ β π (([,) β (πβπ))βπ)}) & β’ πΏ = (β β ((β Γ β) βm π) β¦ βπ β π (volβ(([,) β β)βπ))) & β’ π· = (π β π« (β βm π) β¦ (π β β+ β¦ {π β (πΆβπ) β£ (Ξ£^β(π β β β¦ (πΏβ(πβπ)))) β€ (((voln*βπ)βπ) +π π)})) β β’ (π β ((voln*βπ)ββͺ π β β (π΄βπ)) β€ ((Ξ£^β(π β β β¦ ((voln*βπ)β(π΄βπ)))) +π πΈ)) | ||
Theorem | ovnsubadd 45274* | (voln*βπ) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) & β’ (π β π΄:ββΆπ« (β βm π)) β β’ (π β ((voln*βπ)ββͺ π β β (π΄βπ)) β€ (Ξ£^β(π β β β¦ ((voln*βπ)β(π΄βπ))))) | ||
Theorem | ovnome 45275 | (voln*βπ) is an outer measure on the space of multidimensional real numbers with dimension equal to the cardinality of the finite set π. Proposition 115D (a) of [Fremlin1] p. 30 . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) β β’ (π β (voln*βπ) β OutMeas) | ||
Theorem | vonmea 45276 | (volnβπ) is a measure on the space of multidimensional real numbers with dimension equal to the cardinality of the finite set π. Comments in Definition 115E of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
β’ (π β π β Fin) β β’ (π β (volnβπ) β Meas) | ||
Theorem | volicon0 45277 | The measure of a nonempty left-closed, right-open interval. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) β β’ (π β (volβ(π΄[,)π΅)) = (π΅ β π΄)) | ||
Theorem | hsphoif 45278* | π» is a function (that returns the representation of the right side of a half-open interval intersected with a half-space). Step (b) in Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ π» = (π₯ β β β¦ (π β (β βm π) β¦ (π β π β¦ if(π β π, (πβπ), if((πβπ) β€ π₯, (πβπ), π₯))))) & β’ (π β π΄ β β) & β’ (π β π β π) & β’ (π β π΅:πβΆβ) β β’ (π β ((π»βπ΄)βπ΅):πβΆβ) | ||
Theorem | hoidmvval 45279* | The dimensional volume of a multidimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ πΏ = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) & β’ (π β π΄:πβΆβ) & β’ (π β π΅:πβΆβ) & β’ (π β π β Fin) β β’ (π β (π΄(πΏβπ)π΅) = if(π = β , 0, βπ β π (volβ((π΄βπ)[,)(π΅βπ))))) | ||
Theorem | hoissrrn2 45280* | A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ β²ππ & β’ ((π β§ π β π) β π΄ β β) & β’ ((π β§ π β π) β π΅ β β*) β β’ (π β Xπ β π (π΄[,)π΅) β (β βm π)) | ||
Theorem | hsphoival 45281* | π» is a function (that returns the representation of the right side of a half-open interval intersected with a half-space). Step (b) in Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ π» = (π₯ β β β¦ (π β (β βm π) β¦ (π β π β¦ if(π β π, (πβπ), if((πβπ) β€ π₯, (πβπ), π₯))))) & β’ (π β π΄ β β) & β’ (π β π β π) & β’ (π β π΅:πβΆβ) & β’ (π β πΎ β π) β β’ (π β (((π»βπ΄)βπ΅)βπΎ) = if(πΎ β π, (π΅βπΎ), if((π΅βπΎ) β€ π΄, (π΅βπΎ), π΄))) | ||
Theorem | hoiprodcl3 45282* | The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ β²ππ & β’ (π β π β Fin) & β’ ((π β§ π β π) β π΄ β β) & β’ ((π β§ π β π) β π΅ β β) β β’ (π β βπ β π (volβ(π΄[,)π΅)) β (0[,)+β)) | ||
Theorem | volicore 45283 | The Lebesgue measure of a left-closed right-open interval is a real number. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ ((π΄ β β β§ π΅ β β) β (volβ(π΄[,)π΅)) β β) | ||
Theorem | hoidmvcl 45284* | The dimensional volume of a multidimensional half-open interval is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ πΏ = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) & β’ (π β π β Fin) & β’ (π β π΄:πβΆβ) & β’ (π β π΅:πβΆβ) β β’ (π β (π΄(πΏβπ)π΅) β (0[,)+β)) | ||
Theorem | hoidmv0val 45285* | The dimensional volume of a 0-dimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ πΏ = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) & β’ (π β π΄:β βΆβ) & β’ (π β π΅:β βΆβ) β β’ (π β (π΄(πΏββ )π΅) = 0) | ||
Theorem | hoidmvn0val 45286* | The dimensional volume of a non-0-dimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ πΏ = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) & β’ (π β π β Fin) & β’ (π β π β β ) & β’ (π β π΄:πβΆβ) & β’ (π β π΅:πβΆβ) β β’ (π β (π΄(πΏβπ)π΅) = βπ β π (volβ((π΄βπ)[,)(π΅βπ)))) | ||
Theorem | hsphoidmvle2 45287* | The dimensional volume of a half-open interval intersected with a two half-spaces. Used in the last inequality of step (c) of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ πΏ = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) & β’ (π β π β Fin) & β’ (π β π β (π β π)) & β’ π = (π βͺ {π}) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β πΆ β€ π·) & β’ π» = (π₯ β β β¦ (π β (β βm π) β¦ (π β π β¦ if(π β π, (πβπ), if((πβπ) β€ π₯, (πβπ), π₯))))) & β’ (π β π΄:πβΆβ) & β’ (π β π΅:πβΆβ) β β’ (π β (π΄(πΏβπ)((π»βπΆ)βπ΅)) β€ (π΄(πΏβπ)((π»βπ·)βπ΅))) | ||
Theorem | hsphoidmvle 45288* | The dimensional volume of a half-open interval intersected with a half-space, is less than or equal to the dimensional volume of the original half-open interval. Used in the last inequality of step (e) of Lemma 115B of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ πΏ = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) & β’ (π β π β Fin) & β’ (π β π β (π β π)) & β’ π = (π βͺ {π}) & β’ (π β πΆ β β) & β’ π» = (π₯ β β β¦ (π β (β βm π) β¦ (π β π β¦ if(π β π, (πβπ), if((πβπ) β€ π₯, (πβπ), π₯))))) & β’ (π β π΄:πβΆβ) & β’ (π β π΅:πβΆβ) β β’ (π β (π΄(πΏβπ)((π»βπΆ)βπ΅)) β€ (π΄(πΏβπ)π΅)) | ||
Theorem | hoidmvval0 45289* | The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ β²ππ & β’ πΏ = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) & β’ (π β π β Fin) & β’ (π β π΄:πβΆβ) & β’ (π β π΅:πβΆβ) & β’ (π β βπ β π (π΅βπ) β€ (π΄βπ)) β β’ (π β (π΄(πΏβπ)π΅) = 0) | ||
Theorem | hoiprodp1 45290* | The dimensional volume of a half-open interval with dimension π + 1. Used in the first equality of step (e) of Lemma 115B of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ πΏ = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) & β’ (π β π β Fin) & β’ (π β π β π) & β’ (π β Β¬ π β π) & β’ π = (π βͺ {π}) & β’ (π β π΄:πβΆβ) & β’ (π β π΅:πβΆβ) & β’ πΊ = βπ β π (volβ((π΄βπ)[,)(π΅βπ))) β β’ (π β (π΄(πΏβπ)π΅) = (πΊ Β· (volβ((π΄βπ)[,)(π΅βπ))))) | ||
Theorem | sge0hsphoire 45291* | If the generalized sum of dimensional volumes of n-dimensional half-open intervals is finite, then the sum stays finite if every half-open interval is intersected with a half-space. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ πΏ = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) & β’ (π β π β Fin) & β’ (π β π β (π β π)) & β’ π = (π βͺ {π}) & β’ (π β πΆ:ββΆ(β βm π)) & β’ (π β π·:ββΆ(β βm π)) & β’ (π β (Ξ£^β(π β β β¦ ((πΆβπ)(πΏβπ)(π·βπ)))) β β) & β’ π» = (π₯ β β β¦ (π β (β βm π) β¦ (π β π β¦ if(π β π, (πβπ), if((πβπ) β€ π₯, (πβπ), π₯))))) & β’ (π β π β β) β β’ (π β (Ξ£^β(π β β β¦ ((πΆβπ)(πΏβπ)((π»βπ)β(π·βπ))))) β β) | ||
Theorem | hoidmvval0b 45292* | The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ πΏ = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) & β’ (π β π β Fin) & β’ (π β π΄:πβΆβ) β β’ (π β (π΄(πΏβπ)π΄) = 0) | ||
Theorem | hoidmv1lelem1 45293* | The supremum of π belongs to π. This is the last part of step (a) and the whole step (b) in the proof of Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ (π β πΆ:ββΆβ) & β’ (π β π·:ββΆβ) & β’ (π β (Ξ£^β(π β β β¦ (volβ((πΆβπ)[,)(π·βπ))))) β β) & β’ π = {π§ β (π΄[,]π΅) β£ (π§ β π΄) β€ (Ξ£^β(π β β β¦ (volβ((πΆβπ)[,)if((π·βπ) β€ π§, (π·βπ), π§)))))} & β’ π = sup(π, β, < ) β β’ (π β (π β π β§ π΄ β π β§ βπ₯ β β βπ¦ β π π¦ β€ π₯)) | ||
Theorem | hoidmv1lelem2 45294* | This is the contradiction proven in step (c) in the proof of Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ:ββΆβ) & β’ (π β π·:ββΆβ) & β’ (π β (Ξ£^β(π β β β¦ (volβ((πΆβπ)[,)(π·βπ))))) β β) & β’ π = {π§ β (π΄[,]π΅) β£ (π§ β π΄) β€ (Ξ£^β(π β β β¦ (volβ((πΆβπ)[,)if((π·βπ) β€ π§, (π·βπ), π§)))))} & β’ (π β π β π) & β’ (π β π΄ β€ π) & β’ (π β π < π΅) & β’ (π β πΎ β β) & β’ (π β π β ((πΆβπΎ)[,)(π·βπΎ))) & β’ π = if((π·βπΎ) β€ π΅, (π·βπΎ), π΅) β β’ (π β βπ’ β π π < π’) | ||
Theorem | hoidmv1lelem3 45295* | The dimensional volume of a 1-dimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. This is the nonempty, finite generalized sum, sub case in Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ (π β πΆ:ββΆβ) & β’ (π β π·:ββΆβ) & β’ (π β (π΄[,)π΅) β βͺ π β β ((πΆβπ)[,)(π·βπ))) & β’ (π β (Ξ£^β(π β β β¦ (volβ((πΆβπ)[,)(π·βπ))))) β β) & β’ π = {π§ β (π΄[,]π΅) β£ (π§ β π΄) β€ (Ξ£^β(π β β β¦ (volβ((πΆβπ)[,)if((π·βπ) β€ π§, (π·βπ), π§)))))} & β’ π = sup(π, β, < ) β β’ (π β (π΅ β π΄) β€ (Ξ£^β(π β β β¦ (volβ((πΆβπ)[,)(π·βπ)))))) | ||
Theorem | hoidmv1le 45296* | The dimensional volume of a 1-dimensional half-open interval is less than or equal to the generalized sum of the dimensional volumes of countable half-open intervals that cover it. This is one of the two base cases of the induction of Lemma 115B of [Fremlin1] p. 29 (the other base case is the 0-dimensional case). This proof of the 1-dimensional case is given in Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ πΏ = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) & β’ (π β π β π) & β’ π = {π} & β’ (π β π΄:πβΆβ) & β’ (π β π΅:πβΆβ) & β’ (π β πΆ:ββΆ(β βm π)) & β’ (π β π·:ββΆ(β βm π)) & β’ (π β Xπ β π ((π΄βπ)[,)(π΅βπ)) β βͺ π β β Xπ β π (((πΆβπ)βπ)[,)((π·βπ)βπ))) β β’ (π β (π΄(πΏβπ)π΅) β€ (Ξ£^β(π β β β¦ ((πΆβπ)(πΏβπ)(π·βπ))))) | ||
Theorem | hoidmvlelem1 45297* | The supremum of π belongs to π. Step (c) in the proof of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ πΏ = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) & β’ (π β π β Fin) & β’ (π β π β π) & β’ (π β π β (π β π)) & β’ π = (π βͺ {π}) & β’ (π β π΄:πβΆβ) & β’ (π β π΅:πβΆβ) & β’ (π β πΆ:ββΆ(β βm π)) & β’ (π β π·:ββΆ(β βm π)) & β’ (π β (Ξ£^β(π β β β¦ ((πΆβπ)(πΏβπ)(π·βπ)))) β β) & β’ π» = (π₯ β β β¦ (π β (β βm π) β¦ (π β π β¦ if(π β π, (πβπ), if((πβπ) β€ π₯, (πβπ), π₯))))) & β’ πΊ = ((π΄ βΎ π)(πΏβπ)(π΅ βΎ π)) & β’ (π β πΈ β β+) & β’ π = {π§ β ((π΄βπ)[,](π΅βπ)) β£ (πΊ Β· (π§ β (π΄βπ))) β€ ((1 + πΈ) Β· (Ξ£^β(π β β β¦ ((πΆβπ)(πΏβπ)((π»βπ§)β(π·βπ))))))} & β’ π = sup(π, β, < ) & β’ (π β (π΄βπ) < (π΅βπ)) β β’ (π β π β π) | ||
Theorem | hoidmvlelem2 45298* | This is the contradiction proven in step (d) in the proof of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ πΏ = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) & β’ (π β π β Fin) & β’ (π β π β π) & β’ (π β π β (π β π)) & β’ π = (π βͺ {π}) & β’ (π β π΄:πβΆβ) & β’ (π β π΅:πβΆβ) & β’ (π β πΆ:ββΆ(β βm π)) & β’ πΉ = (π¦ β π β¦ 0) & β’ π½ = (π β β β¦ if(π β (((πΆβπ)βπ)[,)((π·βπ)βπ)), ((πΆβπ) βΎ π), πΉ)) & β’ (π β π·:ββΆ(β βm π)) & β’ πΎ = (π β β β¦ if(π β (((πΆβπ)βπ)[,)((π·βπ)βπ)), ((π·βπ) βΎ π), πΉ)) & β’ (π β (Ξ£^β(π β β β¦ ((πΆβπ)(πΏβπ)(π·βπ)))) β β) & β’ π» = (π₯ β β β¦ (π β (β βm π) β¦ (π β π β¦ if(π β π, (πβπ), if((πβπ) β€ π₯, (πβπ), π₯))))) & β’ πΊ = ((π΄ βΎ π)(πΏβπ)(π΅ βΎ π)) & β’ (π β πΈ β β+) & β’ π = {π§ β ((π΄βπ)[,](π΅βπ)) β£ (πΊ Β· (π§ β (π΄βπ))) β€ ((1 + πΈ) Β· (Ξ£^β(π β β β¦ ((πΆβπ)(πΏβπ)((π»βπ§)β(π·βπ))))))} & β’ (π β π β π) & β’ (π β π < (π΅βπ)) & β’ π = (π β β β¦ ((π½βπ)(πΏβπ)(πΎβπ))) & β’ (π β π β β) & β’ (π β πΊ β€ ((1 + πΈ) Β· Ξ£π β (1...π)(πβπ))) & β’ π = ran (π β {π β (1...π) β£ π β (((πΆβπ)βπ)[,)((π·βπ)βπ))} β¦ ((π·βπ)βπ)) & β’ π = ({(π΅βπ)} βͺ π) & β’ π = inf(π, β, < ) β β’ (π β βπ’ β π π < π’) | ||
Theorem | hoidmvlelem3 45299* | This is the contradiction proven in step (d) in the proof of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ πΏ = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) & β’ (π β π β Fin) & β’ (π β π β π) & β’ (π β π β (π β π)) & β’ π = (π βͺ {π}) & β’ (π β π΄:πβΆβ) & β’ (π β π΅:πβΆβ) & β’ ((π β§ π β π) β (π΄βπ) < (π΅βπ)) & β’ πΉ = (π¦ β π β¦ 0) & β’ (π β πΆ:ββΆ(β βm π)) & β’ π½ = (π β β β¦ if(π β (((πΆβπ)βπ)[,)((π·βπ)βπ)), ((πΆβπ) βΎ π), πΉ)) & β’ (π β π·:ββΆ(β βm π)) & β’ πΎ = (π β β β¦ if(π β (((πΆβπ)βπ)[,)((π·βπ)βπ)), ((π·βπ) βΎ π), πΉ)) & β’ (π β (Ξ£^β(π β β β¦ ((πΆβπ)(πΏβπ)(π·βπ)))) β β) & β’ π» = (π₯ β β β¦ (π β (β βm π) β¦ (π β π β¦ if(π β π, (πβπ), if((πβπ) β€ π₯, (πβπ), π₯))))) & β’ πΊ = ((π΄ βΎ π)(πΏβπ)(π΅ βΎ π)) & β’ (π β πΈ β β+) & β’ π = {π§ β ((π΄βπ)[,](π΅βπ)) β£ (πΊ Β· (π§ β (π΄βπ))) β€ ((1 + πΈ) Β· (Ξ£^β(π β β β¦ ((πΆβπ)(πΏβπ)((π»βπ§)β(π·βπ))))))} & β’ (π β π β π) & β’ (π β π < (π΅βπ)) & β’ π = (π β β β¦ ((π½βπ)(πΏβπ)(πΎβπ))) & β’ (π β βπ β (β βm π)βπ β (β βm π)βπ β ((β βm π) βm β)ββ β ((β βm π) βm β)(Xπ β π ((πβπ)[,)(πβπ)) β βͺ π β β Xπ β π (((πβπ)βπ)[,)((ββπ)βπ)) β (π(πΏβπ)π) β€ (Ξ£^β(π β β β¦ ((πβπ)(πΏβπ)(ββπ)))))) & β’ (π β Xπ β π ((π΄βπ)[,)(π΅βπ)) β βͺ π β β Xπ β π (((πΆβπ)βπ)[,)((π·βπ)βπ))) & β’ π = (π₯ β Xπ β π ((π΄βπ)[,)(π΅βπ)) β¦ (π β π β¦ if(π β π, (π₯βπ), π))) β β’ (π β βπ’ β π π < π’) | ||
Theorem | hoidmvlelem4 45300* | The dimensional volume of a multidimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. Induction step of Lemma 115B of [Fremlin1] p. 29, case nonempty interval and dimension of the space greater than 1. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
β’ πΏ = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) & β’ (π β π β Fin) & β’ (π β π β π) & β’ (π β π β β ) & β’ (π β π β (π β π)) & β’ π = (π βͺ {π}) & β’ (π β π΄:πβΆβ) & β’ (π β π΅:πβΆβ) & β’ ((π β§ π β π) β (π΄βπ) < (π΅βπ)) & β’ (π β πΆ:ββΆ(β βm π)) & β’ (π β π·:ββΆ(β βm π)) & β’ (π β (Ξ£^β(π β β β¦ ((πΆβπ)(πΏβπ)(π·βπ)))) β β) & β’ π» = (π₯ β β β¦ (π β (β βm π) β¦ (π β π β¦ if(π β π, (πβπ), if((πβπ) β€ π₯, (πβπ), π₯))))) & β’ πΊ = ((π΄ βΎ π)(πΏβπ)(π΅ βΎ π)) & β’ (π β πΈ β β+) & β’ π = {π§ β ((π΄βπ)[,](π΅βπ)) β£ (πΊ Β· (π§ β (π΄βπ))) β€ ((1 + πΈ) Β· (Ξ£^β(π β β β¦ ((πΆβπ)(πΏβπ)((π»βπ§)β(π·βπ))))))} & β’ π = sup(π, β, < ) & β’ (π β βπ β (β βm π)βπ β (β βm π)βπ β ((β βm π) βm β)ββ β ((β βm π) βm β)(Xπ β π ((πβπ)[,)(πβπ)) β βͺ π β β Xπ β π (((πβπ)βπ)[,)((ββπ)βπ)) β (π(πΏβπ)π) β€ (Ξ£^β(π β β β¦ ((πβπ)(πΏβπ)(ββπ)))))) & β’ (π β Xπ β π ((π΄βπ)[,)(π΅βπ)) β βͺ π β β Xπ β π (((πΆβπ)βπ)[,)((π·βπ)βπ))) β β’ (π β (π΄(πΏβπ)π΅) β€ ((1 + πΈ) Β· (Ξ£^β(π β β β¦ ((πΆβπ)(πΏβπ)(π·βπ)))))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |