Home | Metamath
Proof Explorer Theorem List (p. 453 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | uspgrbispr 45201* | There is a bijection between the "simple pseudographs" with a fixed set of vertices 𝑉 and the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 26-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⇒ ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑃) | ||
Theorem | uspgrspren 45202* | The set 𝐺 of the "simple pseudographs" with a fixed set of vertices 𝑉 and the class 𝑃 of subsets of the set of pairs over the fixed set 𝑉 are equinumerous. (Contributed by AV, 27-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐺 ≈ 𝑃) | ||
Theorem | uspgrymrelen 45203* | The set 𝐺 of the "simple pseudographs" with a fixed set of vertices 𝑉 and the class 𝑅 of the symmetric relations on the fixed set 𝑉 are equinumerous. For more details about the class 𝐺 of all "simple pseudographs" see comments on uspgrbisymrel 45204. (Contributed by AV, 27-Nov-2021.) |
⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐺 ≈ 𝑅) | ||
Theorem | uspgrbisymrel 45204* |
There is a bijection between the "simple pseudographs" for a fixed
set
𝑉 of vertices and the class 𝑅 of the
symmetric relations on the
fixed set 𝑉. The simple pseudographs, which are
graphs without
hyper- or multiedges, but which may contain loops, are expressed as
ordered pairs of the vertices and the edges (as proper or improper
unordered pairs of vertices, not as indexed edges!) in this theorem.
That class 𝐺 of such simple pseudographs is a set
(if 𝑉 is a
set, see uspgrex 45200) of equivalence classes of graphs
abstracting from
the index sets of their edge functions.
Solely for this abstraction, there is a bijection between the "simple pseudographs" as members of 𝐺 and the symmetric relations 𝑅 on the fixed set 𝑉 of vertices. This theorem would not hold for 𝐺 = {𝑔 ∈ USPGraph ∣ (Vtx‘𝑔) = 𝑉} and even not for 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ 〈𝑣, 𝑒〉 ∈ USPGraph)}, because these are much bigger classes. (Proposed by Gerard Lang, 16-Nov-2021.) (Contributed by AV, 27-Nov-2021.) |
⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} ⇒ ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅) | ||
Theorem | uspgrbisymrelALT 45205* | Alternate proof of uspgrbisymrel 45204 not using the definition of equinumerosity. (Contributed by AV, 26-Nov-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} ⇒ ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅) | ||
Theorem | ovn0dmfun 45206 | If a class operation value for two operands is not the empty set, then the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6794. (Contributed by AV, 27-Jan-2020.) |
⊢ ((𝐴𝐹𝐵) ≠ ∅ → (〈𝐴, 𝐵〉 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {〈𝐴, 𝐵〉}))) | ||
Theorem | xpsnopab 45207* | A Cartesian product with a singleton expressed as ordered-pair class abstraction. (Contributed by AV, 27-Jan-2020.) |
⊢ ({𝑋} × 𝐶) = {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)} | ||
Theorem | xpiun 45208* | A Cartesian product expressed as indexed union of ordered-pair class abstractions. (Contributed by AV, 27-Jan-2020.) |
⊢ (𝐵 × 𝐶) = ∪ 𝑥 ∈ 𝐵 {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} | ||
Theorem | ovn0ssdmfun 45209* | If a class' operation value for two operands is not the empty set, the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6794. (Contributed by AV, 27-Jan-2020.) |
⊢ (∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) | ||
Theorem | fnxpdmdm 45210 | The domain of the domain of a function over a Cartesian square. (Contributed by AV, 13-Jan-2020.) |
⊢ (𝐹 Fn (𝐴 × 𝐴) → dom dom 𝐹 = 𝐴) | ||
Theorem | cnfldsrngbas 45211 | The base set of a subring of the field of complex numbers. (Contributed by AV, 31-Jan-2020.) |
⊢ 𝑅 = (ℂfld ↾s 𝑆) ⇒ ⊢ (𝑆 ⊆ ℂ → 𝑆 = (Base‘𝑅)) | ||
Theorem | cnfldsrngadd 45212 | The group addition operation of a subring of the field of complex numbers. (Contributed by AV, 31-Jan-2020.) |
⊢ 𝑅 = (ℂfld ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ 𝑉 → + = (+g‘𝑅)) | ||
Theorem | cnfldsrngmul 45213 | The ring multiplication operation of a subring of the field of complex numbers. (Contributed by AV, 31-Jan-2020.) |
⊢ 𝑅 = (ℂfld ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ 𝑉 → · = (.r‘𝑅)) | ||
Theorem | plusfreseq 45214 | If the empty set is not contained in the range of the group addition function of an extensible structure (not necessarily a magma), the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ ⨣ = (+𝑓‘𝑀) ⇒ ⊢ (∅ ∉ ran ⨣ → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) | ||
Theorem | mgmplusfreseq 45215 | If the empty set is not contained in the base set of a magma, the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ ⨣ = (+𝑓‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) | ||
Theorem | 0mgm 45216 | A set with an empty base set is always a magma. (Contributed by AV, 25-Feb-2020.) |
⊢ (Base‘𝑀) = ∅ ⇒ ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ Mgm) | ||
Theorem | mgmpropd 45217* | If two structures have the same (nonempty) base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a magma iff the other one is. (Contributed by AV, 25-Feb-2020.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Mgm ↔ 𝐿 ∈ Mgm)) | ||
Theorem | ismgmd 45218* | Deduce a magma from its properties. (Contributed by AV, 25-Feb-2020.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → + = (+g‘𝐺)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐺 ∈ Mgm) | ||
Syntax | cmgmhm 45219 | Hom-set generator class for magmas. |
class MgmHom | ||
Syntax | csubmgm 45220 | Class function taking a magma to its lattice of submagmas. |
class SubMgm | ||
Definition | df-mgmhm 45221* | A magma homomorphism is a function on the base sets which preserves the binary operation. (Contributed by AV, 24-Feb-2020.) |
⊢ MgmHom = (𝑠 ∈ Mgm, 𝑡 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ ∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦))}) | ||
Definition | df-submgm 45222* | A submagma is a subset of a magma which is closed under the operation. Such subsets are themselves magmas. (Contributed by AV, 24-Feb-2020.) |
⊢ SubMgm = (𝑠 ∈ Mgm ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡}) | ||
Theorem | mgmhmrcl 45223 | Reverse closure of a magma homomorphism. (Contributed by AV, 24-Feb-2020.) |
⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) | ||
Theorem | submgmrcl 45224 | Reverse closure for submagmas. (Contributed by AV, 24-Feb-2020.) |
⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ Mgm) | ||
Theorem | ismgmhm 45225* | Property of a magma homomorphism. (Contributed by AV, 25-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))))) | ||
Theorem | mgmhmf 45226 | A magma homomorphism is a function. (Contributed by AV, 25-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:𝐵⟶𝐶) | ||
Theorem | mgmhmpropd 45227* | Magma homomorphism depends only on the operation of structures. (Contributed by AV, 25-Feb-2020.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐽)) & ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ (𝜑 → 𝐶 ≠ ∅) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) ⇒ ⊢ (𝜑 → (𝐽 MgmHom 𝐾) = (𝐿 MgmHom 𝑀)) | ||
Theorem | mgmhmlin 45228 | A magma homomorphism preserves the binary operation. (Contributed by AV, 25-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌))) | ||
Theorem | mgmhmf1o 45229 | A magma homomorphism is bijective iff its converse is also a magma homomorphism. (Contributed by AV, 25-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 MgmHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 MgmHom 𝑅))) | ||
Theorem | idmgmhm 45230 | The identity homomorphism on a magma. (Contributed by AV, 27-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (𝑀 ∈ Mgm → ( I ↾ 𝐵) ∈ (𝑀 MgmHom 𝑀)) | ||
Theorem | issubmgm 45231* | Expand definition of a submagma. (Contributed by AV, 25-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆))) | ||
Theorem | issubmgm2 45232 | Submagmas are subsets that are also magmas. (Contributed by AV, 25-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝐻 = (𝑀 ↾s 𝑆) ⇒ ⊢ (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ 𝐻 ∈ Mgm))) | ||
Theorem | rabsubmgmd 45233* | Deduction for proving that a restricted class abstraction is a submagma. (Contributed by AV, 26-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ Mgm) & ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝜃 ∧ 𝜏))) → 𝜂) & ⊢ (𝑧 = 𝑥 → (𝜓 ↔ 𝜃)) & ⊢ (𝑧 = 𝑦 → (𝜓 ↔ 𝜏)) & ⊢ (𝑧 = (𝑥 + 𝑦) → (𝜓 ↔ 𝜂)) ⇒ ⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ 𝜓} ∈ (SubMgm‘𝑀)) | ||
Theorem | submgmss 45234 | Submagmas are subsets of the base set. (Contributed by AV, 26-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝑆 ⊆ 𝐵) | ||
Theorem | submgmid 45235 | Every magma is trivially a submagma of itself. (Contributed by AV, 26-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (𝑀 ∈ Mgm → 𝐵 ∈ (SubMgm‘𝑀)) | ||
Theorem | submgmcl 45236 | Submagmas are closed under the monoid operation. (Contributed by AV, 26-Feb-2020.) |
⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝑆 ∈ (SubMgm‘𝑀) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) | ||
Theorem | submgmmgm 45237 | Submagmas are themselves magmas under the given operation. (Contributed by AV, 26-Feb-2020.) |
⊢ 𝐻 = (𝑀 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝐻 ∈ Mgm) | ||
Theorem | submgmbas 45238 | The base set of a submagma. (Contributed by AV, 26-Feb-2020.) |
⊢ 𝐻 = (𝑀 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝑆 = (Base‘𝐻)) | ||
Theorem | subsubmgm 45239 | A submagma of a submagma is a submagma. (Contributed by AV, 26-Feb-2020.) |
⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubMgm‘𝐺) → (𝐴 ∈ (SubMgm‘𝐻) ↔ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴 ⊆ 𝑆))) | ||
Theorem | resmgmhm 45240 | Restriction of a magma homomorphism to a submagma is a homomorphism. (Contributed by AV, 26-Feb-2020.) |
⊢ 𝑈 = (𝑆 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 MgmHom 𝑇)) | ||
Theorem | resmgmhm2 45241 | One direction of resmgmhm2b 45242. (Contributed by AV, 26-Feb-2020.) |
⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑇)) | ||
Theorem | resmgmhm2b 45242 | Restriction of the codomain of a homomorphism. (Contributed by AV, 26-Feb-2020.) |
⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ 𝐹 ∈ (𝑆 MgmHom 𝑈))) | ||
Theorem | mgmhmco 45243 | The composition of magma homomorphisms is a homomorphism. (Contributed by AV, 27-Feb-2020.) |
⊢ ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 MgmHom 𝑈)) | ||
Theorem | mgmhmima 45244 | The homomorphic image of a submagma is a submagma. (Contributed by AV, 27-Feb-2020.) |
⊢ ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubMgm‘𝑁)) | ||
Theorem | mgmhmeql 45245 | The equalizer of two magma homomorphisms is a submagma. (Contributed by AV, 27-Feb-2020.) |
⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubMgm‘𝑆)) | ||
Theorem | submgmacs 45246 | Submagmas are an algebraic closure system. (Contributed by AV, 27-Feb-2020.) |
⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Mgm → (SubMgm‘𝐺) ∈ (ACS‘𝐵)) | ||
Theorem | ismhm0 45247 | Property of a monoid homomorphism, expressed by a magma homomorphism. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝑌 = (0g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹‘ 0 ) = 𝑌))) | ||
Theorem | mhmismgmhm 45248 | Each monoid homomorphism is a magma homomorphism. (Contributed by AV, 29-Feb-2020.) |
⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹 ∈ (𝑅 MgmHom 𝑆)) | ||
Theorem | opmpoismgm 45249* | A structure with a group addition operation in maps-to notation is a magma if the operation value is contained in the base set. (Contributed by AV, 16-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑀 ∈ Mgm) | ||
Theorem | copissgrp 45250* | A structure with a constant group addition operation is a semigroup if the constant is contained in the base set. (Contributed by AV, 16-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑀 ∈ Smgrp) | ||
Theorem | copisnmnd 45251* | A structure with a constant group addition operation and at least two elements is not a monoid. (Contributed by AV, 16-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 1 < (♯‘𝐵)) ⇒ ⊢ (𝜑 → 𝑀 ∉ Mnd) | ||
Theorem | 0nodd 45252* | 0 is not an odd integer. (Contributed by AV, 3-Feb-2020.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} ⇒ ⊢ 0 ∉ 𝑂 | ||
Theorem | 1odd 45253* | 1 is an odd integer. (Contributed by AV, 3-Feb-2020.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} ⇒ ⊢ 1 ∈ 𝑂 | ||
Theorem | 2nodd 45254* | 2 is not an odd integer. (Contributed by AV, 3-Feb-2020.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} ⇒ ⊢ 2 ∉ 𝑂 | ||
Theorem | oddibas 45255* | Lemma 1 for oddinmgm 45257: The base set of M is the set of all odd integers. (Contributed by AV, 3-Feb-2020.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} & ⊢ 𝑀 = (ℂfld ↾s 𝑂) ⇒ ⊢ 𝑂 = (Base‘𝑀) | ||
Theorem | oddiadd 45256* | Lemma 2 for oddinmgm 45257: The group addition operation of M is the addition of complex numbers. (Contributed by AV, 3-Feb-2020.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} & ⊢ 𝑀 = (ℂfld ↾s 𝑂) ⇒ ⊢ + = (+g‘𝑀) | ||
Theorem | oddinmgm 45257* | The structure of all odd integers together with the addition of complex numbers is not a magma. Remark: the structure of the complementary subset of the set of integers, the even integers, is a magma, actually an abelian group, see 2zrngaabl 45390, and even a non-unital ring, see 2zrng 45381. (Contributed by AV, 3-Feb-2020.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} & ⊢ 𝑀 = (ℂfld ↾s 𝑂) ⇒ ⊢ 𝑀 ∉ Mgm | ||
Theorem | nnsgrpmgm 45258 | The structure of positive integers together with the addition of complex numbers is a magma. (Contributed by AV, 4-Feb-2020.) |
⊢ 𝑀 = (ℂfld ↾s ℕ) ⇒ ⊢ 𝑀 ∈ Mgm | ||
Theorem | nnsgrp 45259 | The structure of positive integers together with the addition of complex numbers is a semigroup. (Contributed by AV, 4-Feb-2020.) |
⊢ 𝑀 = (ℂfld ↾s ℕ) ⇒ ⊢ 𝑀 ∈ Smgrp | ||
Theorem | nnsgrpnmnd 45260 | The structure of positive integers together with the addition of complex numbers is not a monoid. (Contributed by AV, 4-Feb-2020.) |
⊢ 𝑀 = (ℂfld ↾s ℕ) ⇒ ⊢ 𝑀 ∉ Mnd | ||
Theorem | nn0mnd 45261 | The set of nonnegative integers under (complex) addition is a monoid. Example in [Lang] p. 6. Remark: 𝑀 could have also been written as (ℂfld ↾s ℕ0). (Contributed by AV, 27-Dec-2023.) |
⊢ 𝑀 = {〈(Base‘ndx), ℕ0〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ 𝑀 ∈ Mnd | ||
Theorem | gsumsplit2f 45262* | Split a group sum into two parts. (Contributed by AV, 4-Sep-2019.) |
⊢ Ⅎ𝑘𝜑 & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋)))) | ||
Theorem | gsumdifsndf 45263* | Extract a summand from a finitely supported group sum. (Contributed by AV, 4-Sep-2019.) |
⊢ Ⅎ𝑘𝑌 & ⊢ Ⅎ𝑘𝜑 & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp (0g‘𝐺)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌)) | ||
Theorem | gsumfsupp 45264 | A group sum of a family can be restricted to the support of that family without changing its value, provided that that support is finite. This corresponds to the definition of an (infinite) product in [Lang] p. 5, last two formulas. (Contributed by AV, 27-Dec-2023.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐼 = (𝐹 supp 0 ) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐼)) = (𝐺 Σg 𝐹)) | ||
With df-mpo 7260, binary operations are defined by a rule, and with df-ov 7258, the value of a binary operation applied to two operands can be expressed. In both cases, the two operands can belong to different sets, and the result can be an element of a third set. However, according to Wikipedia "Binary operation", see https://en.wikipedia.org/wiki/Binary_operation (19-Jan-2020), "... a binary operation on a set 𝑆 is a mapping of the elements of the Cartesian product 𝑆 × 𝑆 to S: 𝑓:𝑆 × 𝑆⟶𝑆. Because the result of performing the operation on a pair of elements of S is again an element of S, the operation is called a closed binary operation on S (or sometimes expressed as having the property of closure).". To distinguish this more restrictive definition (in Wikipedia and most of the literature) from the general case, we call binary operations mapping the elements of the Cartesian product 𝑆 × 𝑆 internal binary operations, see df-intop 45281. If, in addition, the result is also contained in the set 𝑆, the operation is called closed internal binary operation, see df-clintop 45282. Therefore, a "binary operation on a set 𝑆 " according to Wikipedia is a "closed internal binary operation" in our terminology. If the sets are different, the operation is explicitly called external binary operation (see Wikipedia https://en.wikipedia.org/wiki/Binary_operation#External_binary_operations 45282 ). Taking a step back, we define "laws" applicable for "binary operations" (which even need not to be functions), according to the definition in [Hall] p. 1 and [BourbakiAlg1] p. 1, p. 4 and p. 7. These laws are used, on the one hand, to specialize internal binary operations (see df-clintop 45282 and df-assintop 45283), and on the other hand to define the common algebraic structures like magmas, groups, rings, etc. Internal binary operations, which obey these laws, are defined afterwards. Notice that in [BourbakiAlg1] p. 1, p. 4 and p. 7, these operations are called "laws" by themselves. In the following, an alternate definition df-cllaw 45268 for an internal binary operation is provided, which does not require function-ness, but only closure. Therefore, this definition could be used as binary operation (Slot 2) defined for a magma as extensible structure, see mgmplusgiopALT 45276, or for an alternate definition df-mgm2 45301 for a magma as extensible structure. Similar results are obtained for an associative operation (defining semigroups). | ||
In this subsection, the "laws" applicable for "binary operations" according to the definition in [Hall] p. 1 and [BourbakiAlg1] p. 1, p. 4 and p. 7 are defined. These laws are called "internal laws" in [BourbakiAlg1] p. xxi. | ||
Syntax | ccllaw 45265 | Extend class notation for the closure law. |
class clLaw | ||
Syntax | casslaw 45266 | Extend class notation for the associative law. |
class assLaw | ||
Syntax | ccomlaw 45267 | Extend class notation for the commutative law. |
class comLaw | ||
Definition | df-cllaw 45268* | The closure law for binary operations, see definitions of laws A0. and M0. in section 1.1 of [Hall] p. 1, or definition 1 in [BourbakiAlg1] p. 1: the value of a binary operation applied to two operands of a given sets is an element of this set. By this definition, the closure law is expressed as binary relation: a binary operation is related to a set by clLaw if the closure law holds for this binary operation regarding this set. Note that the binary operation needs not to be a function. (Contributed by AV, 7-Jan-2020.) |
⊢ clLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) ∈ 𝑚} | ||
Definition | df-comlaw 45269* | The commutative law for binary operations, see definitions of laws A2. and M2. in section 1.1 of [Hall] p. 1, or definition 8 in [BourbakiAlg1] p. 7: the value of a binary operation applied to two operands equals the value of a binary operation applied to the two operands in reversed order. By this definition, the commutative law is expressed as binary relation: a binary operation is related to a set by comLaw if the commutative law holds for this binary operation regarding this set. Note that the binary operation needs neither to be closed nor to be a function. (Contributed by AV, 7-Jan-2020.) |
⊢ comLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) = (𝑦𝑜𝑥)} | ||
Definition | df-asslaw 45270* | The associative law for binary operations, see definitions of laws A1. and M1. in section 1.1 of [Hall] p. 1, or definition 5 in [BourbakiAlg1] p. 4: the value of a binary operation applied the value of the binary operation applied to two operands and a third operand equals the value of the binary operation applied to the first operand and the value of the binary operation applied to the second and third operand. By this definition, the associative law is expressed as binary relation: a binary operation is related to a set by assLaw if the associative law holds for this binary operation regarding this set. Note that the binary operation needs neither to be closed nor to be a function. (Contributed by FL, 1-Nov-2009.) (Revised by AV, 13-Jan-2020.) |
⊢ assLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 ∀𝑧 ∈ 𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))} | ||
Theorem | iscllaw 45271* | The predicate "is a closed operation". (Contributed by AV, 13-Jan-2020.) |
⊢ (( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → ( ⚬ clLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) | ||
Theorem | iscomlaw 45272* | The predicate "is a commutative operation". (Contributed by AV, 20-Jan-2020.) |
⊢ (( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → ( ⚬ comLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) = (𝑦 ⚬ 𝑥))) | ||
Theorem | clcllaw 45273 | Closure of a closed operation. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 21-Jan-2020.) |
⊢ (( ⚬ clLaw 𝑀 ∧ 𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀) | ||
Theorem | isasslaw 45274* | The predicate "is an associative operation". (Contributed by FL, 1-Nov-2009.) (Revised by AV, 13-Jan-2020.) |
⊢ (( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → ( ⚬ assLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) | ||
Theorem | asslawass 45275* | Associativity of an associative operation. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 21-Jan-2020.) |
⊢ ( ⚬ assLaw 𝑀 → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) | ||
Theorem | mgmplusgiopALT 45276 | Slot 2 (group operation) of a magma as extensible structure is a closed operation on the base set. (Contributed by AV, 13-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑀 ∈ Mgm → (+g‘𝑀) clLaw (Base‘𝑀)) | ||
Theorem | sgrpplusgaopALT 45277 | Slot 2 (group operation) of a semigroup as extensible structure is an associative operation on the base set. (Contributed by AV, 13-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐺 ∈ Smgrp → (+g‘𝐺) assLaw (Base‘𝐺)) | ||
In this subsection, "internal binary operations" obeying different laws are defined. | ||
Syntax | cintop 45278 | Extend class notation with class of internal (binary) operations for a set. |
class intOp | ||
Syntax | cclintop 45279 | Extend class notation with class of closed operations for a set. |
class clIntOp | ||
Syntax | cassintop 45280 | Extend class notation with class of associative operations for a set. |
class assIntOp | ||
Definition | df-intop 45281* | Function mapping a set to the class of all internal (binary) operations for this set. (Contributed by AV, 20-Jan-2020.) |
⊢ intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛 ↑m (𝑚 × 𝑚))) | ||
Definition | df-clintop 45282 | Function mapping a set to the class of all closed (internal binary) operations for this set, see definition in section 1.2 of [Hall] p. 2, definition in section I.1 of [Bruck] p. 1, or definition 1 in [BourbakiAlg1] p. 1, where it is called "a law of composition". (Contributed by AV, 20-Jan-2020.) |
⊢ clIntOp = (𝑚 ∈ V ↦ (𝑚 intOp 𝑚)) | ||
Definition | df-assintop 45283* | Function mapping a set to the class of all associative (closed internal binary) operations for this set, see definition 5 in [BourbakiAlg1] p. 4, where it is called "an associative law of composition". (Contributed by AV, 20-Jan-2020.) |
⊢ assIntOp = (𝑚 ∈ V ↦ {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚}) | ||
Theorem | intopval 45284 | The internal (binary) operations for a set. (Contributed by AV, 20-Jan-2020.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (𝑀 intOp 𝑁) = (𝑁 ↑m (𝑀 × 𝑀))) | ||
Theorem | intop 45285 | An internal (binary) operation for a set. (Contributed by AV, 20-Jan-2020.) |
⊢ ( ⚬ ∈ (𝑀 intOp 𝑁) → ⚬ :(𝑀 × 𝑀)⟶𝑁) | ||
Theorem | clintopval 45286 | The closed (internal binary) operations for a set. (Contributed by AV, 20-Jan-2020.) |
⊢ (𝑀 ∈ 𝑉 → ( clIntOp ‘𝑀) = (𝑀 ↑m (𝑀 × 𝑀))) | ||
Theorem | assintopval 45287* | The associative (closed internal binary) operations for a set. (Contributed by AV, 20-Jan-2020.) |
⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) | ||
Theorem | assintopmap 45288* | The associative (closed internal binary) operations for a set, expressed with set exponentiation. (Contributed by AV, 20-Jan-2020.) |
⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ (𝑀 ↑m (𝑀 × 𝑀)) ∣ 𝑜 assLaw 𝑀}) | ||
Theorem | isclintop 45289 | The predicate "is a closed (internal binary) operations for a set". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.) |
⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ ( clIntOp ‘𝑀) ↔ ⚬ :(𝑀 × 𝑀)⟶𝑀)) | ||
Theorem | clintop 45290 | A closed (internal binary) operation for a set. (Contributed by AV, 20-Jan-2020.) |
⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ⚬ :(𝑀 × 𝑀)⟶𝑀) | ||
Theorem | assintop 45291 | An associative (closed internal binary) operation for a set. (Contributed by AV, 20-Jan-2020.) |
⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ⚬ assLaw 𝑀)) | ||
Theorem | isassintop 45292* | The predicate "is an associative (closed internal binary) operations for a set". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.) |
⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ ( assIntOp ‘𝑀) ↔ ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))))) | ||
Theorem | clintopcllaw 45293 | The closure law holds for a closed (internal binary) operation for a set. (Contributed by AV, 20-Jan-2020.) |
⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ⚬ clLaw 𝑀) | ||
Theorem | assintopcllaw 45294 | The closure low holds for an associative (closed internal binary) operation for a set. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.) |
⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ⚬ clLaw 𝑀) | ||
Theorem | assintopasslaw 45295 | The associative low holds for a associative (closed internal binary) operation for a set. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.) |
⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ⚬ assLaw 𝑀) | ||
Theorem | assintopass 45296* | An associative (closed internal binary) operation for a set is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.) |
⊢ ( ⚬ ∈ ( assIntOp ‘𝑀) → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) | ||
Syntax | cmgm2 45297 | Extend class notation with class of all magmas. |
class MgmALT | ||
Syntax | ccmgm2 45298 | Extend class notation with class of all commutative magmas. |
class CMgmALT | ||
Syntax | csgrp2 45299 | Extend class notation with class of all semigroups. |
class SGrpALT | ||
Syntax | ccsgrp2 45300 | Extend class notation with class of all commutative semigroups. |
class CSGrpALT |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |