HomeHome Metamath Proof Explorer
Theorem List (p. 453 of 479)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30158)
  Hilbert Space Explorer  Hilbert Space Explorer
(30159-31681)
  Users' Mathboxes  Users' Mathboxes
(31682-47805)
 

Theorem List for Metamath Proof Explorer - 45201-45300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremomedm 45201 The domain of an outer measure is a power set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝑂 ∈ OutMeas β†’ dom 𝑂 = 𝒫 βˆͺ dom 𝑂)
 
Theoremcaragensplit 45202 If 𝐸 is in the set generated by the Caratheodory's method, then it splits any set 𝐴 in two parts such that the sum of the outer measures of the two parts is equal to the outer measure of the whole set 𝐴. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘† = (CaraGenβ€˜π‘‚)    &   π‘‹ = βˆͺ dom 𝑂    &   (πœ‘ β†’ 𝐸 ∈ 𝑆)    &   (πœ‘ β†’ 𝐴 βŠ† 𝑋)    β‡’   (πœ‘ β†’ ((π‘‚β€˜(𝐴 ∩ 𝐸)) +𝑒 (π‘‚β€˜(𝐴 βˆ– 𝐸))) = (π‘‚β€˜π΄))
 
Theoremcaragenelss 45203 An element of the Caratheodory's construction is a subset of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘† = (CaraGenβ€˜π‘‚)    &   (πœ‘ β†’ 𝐴 ∈ 𝑆)    &   π‘‹ = βˆͺ dom 𝑂    β‡’   (πœ‘ β†’ 𝐴 βŠ† 𝑋)
 
Theoremcarageneld 45204* Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘‹ = βˆͺ dom 𝑂    &   π‘† = (CaraGenβ€˜π‘‚)    &   (πœ‘ β†’ 𝐸 ∈ 𝒫 𝑋)    &   ((πœ‘ ∧ π‘Ž ∈ 𝒫 𝑋) β†’ ((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž))    β‡’   (πœ‘ β†’ 𝐸 ∈ 𝑆)
 
Theoremomecl 45205 The outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘‹ = βˆͺ dom 𝑂    &   (πœ‘ β†’ 𝐴 βŠ† 𝑋)    β‡’   (πœ‘ β†’ (π‘‚β€˜π΄) ∈ (0[,]+∞))
 
Theoremcaragenss 45206 The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the domain of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝑆 = (CaraGenβ€˜π‘‚)    β‡’   (𝑂 ∈ OutMeas β†’ 𝑆 βŠ† dom 𝑂)
 
Theoremomeunile 45207 The outer measure of the union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘‹ = βˆͺ dom 𝑂    &   (πœ‘ β†’ π‘Œ βŠ† 𝒫 𝑋)    &   (πœ‘ β†’ π‘Œ β‰Ό Ο‰)    β‡’   (πœ‘ β†’ (π‘‚β€˜βˆͺ π‘Œ) ≀ (Ξ£^β€˜(𝑂 β†Ύ π‘Œ)))
 
Theoremcaragen0 45208 The empty set belongs to any Caratheodory's construction. First part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘† = (CaraGenβ€˜π‘‚)    β‡’   (πœ‘ β†’ βˆ… ∈ 𝑆)
 
Theoremomexrcl 45209 The outer measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘‹ = βˆͺ dom 𝑂    &   (πœ‘ β†’ 𝐴 βŠ† 𝑋)    β‡’   (πœ‘ β†’ (π‘‚β€˜π΄) ∈ ℝ*)
 
Theoremcaragenunidm 45210 The base set of an outer measure belongs to the sigma-algebra generated by the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘‹ = βˆͺ dom 𝑂    &   π‘† = (CaraGenβ€˜π‘‚)    β‡’   (πœ‘ β†’ 𝑋 ∈ 𝑆)
 
Theoremcaragensspw 45211 The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the power set of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘‹ = βˆͺ dom 𝑂    &   π‘† = (CaraGenβ€˜π‘‚)    β‡’   (πœ‘ β†’ 𝑆 βŠ† 𝒫 𝑋)
 
Theoremomessre 45212 If the outer measure of a set is real, then the outer measure of any of its subset is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘‹ = βˆͺ dom 𝑂    &   (πœ‘ β†’ 𝐴 βŠ† 𝑋)    &   (πœ‘ β†’ (π‘‚β€˜π΄) ∈ ℝ)    &   (πœ‘ β†’ 𝐡 βŠ† 𝐴)    β‡’   (πœ‘ β†’ (π‘‚β€˜π΅) ∈ ℝ)
 
Theoremcaragenuni 45213 The base set of the sigma-algebra generated by the Caratheodory's construction is the whole base set of the original outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘† = (CaraGenβ€˜π‘‚)    β‡’   (πœ‘ β†’ βˆͺ 𝑆 = βˆͺ dom 𝑂)
 
Theoremcaragenuncllem 45214 The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘† = (CaraGenβ€˜π‘‚)    &   (πœ‘ β†’ 𝐸 ∈ 𝑆)    &   (πœ‘ β†’ 𝐹 ∈ 𝑆)    &   π‘‹ = βˆͺ dom 𝑂    &   (πœ‘ β†’ 𝐴 βŠ† 𝑋)    β‡’   (πœ‘ β†’ ((π‘‚β€˜(𝐴 ∩ (𝐸 βˆͺ 𝐹))) +𝑒 (π‘‚β€˜(𝐴 βˆ– (𝐸 βˆͺ 𝐹)))) = (π‘‚β€˜π΄))
 
Theoremcaragenuncl 45215 The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘† = (CaraGenβ€˜π‘‚)    &   (πœ‘ β†’ 𝐸 ∈ 𝑆)    &   (πœ‘ β†’ 𝐹 ∈ 𝑆)    β‡’   (πœ‘ β†’ (𝐸 βˆͺ 𝐹) ∈ 𝑆)
 
Theoremcaragendifcl 45216 The Caratheodory's construction is closed under the complement operation. Second part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘† = (CaraGenβ€˜π‘‚)    &   (πœ‘ β†’ 𝐸 ∈ 𝑆)    β‡’   (πœ‘ β†’ (βˆͺ 𝑆 βˆ– 𝐸) ∈ 𝑆)
 
Theoremcaragenfiiuncl 45217* The Caratheodory's construction is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
β„²π‘˜πœ‘    &   (πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘† = (CaraGenβ€˜π‘‚)    &   (πœ‘ β†’ 𝐴 ∈ Fin)    &   ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ 𝑆)    β‡’   (πœ‘ β†’ βˆͺ π‘˜ ∈ 𝐴 𝐡 ∈ 𝑆)
 
Theoremomeunle 45218 The outer measure of the union of two sets is less than or equal to the sum of the measures, Remark 113B (c) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘‹ = βˆͺ dom 𝑂    &   (πœ‘ β†’ 𝐴 βŠ† 𝑋)    &   (πœ‘ β†’ 𝐡 βŠ† 𝑋)    β‡’   (πœ‘ β†’ (π‘‚β€˜(𝐴 βˆͺ 𝐡)) ≀ ((π‘‚β€˜π΄) +𝑒 (π‘‚β€˜π΅)))
 
Theoremomeiunle 45219* The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
β„²π‘›πœ‘    &   β„²π‘›πΈ    &   (πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘‹ = βˆͺ dom 𝑂    &   π‘ = (β„€β‰₯β€˜π‘)    &   (πœ‘ β†’ 𝐸:π‘βŸΆπ’« 𝑋)    β‡’   (πœ‘ β†’ (π‘‚β€˜βˆͺ 𝑛 ∈ 𝑍 (πΈβ€˜π‘›)) ≀ (Ξ£^β€˜(𝑛 ∈ 𝑍 ↦ (π‘‚β€˜(πΈβ€˜π‘›)))))
 
Theoremomelesplit 45220 The outer measure of a set 𝐴 is less than or equal to the extended addition of the outer measures of the decomposition induced on 𝐴 by any 𝐸. Step (a) in the proof of Caratheodory's Method, Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘‹ = βˆͺ dom 𝑂    &   (πœ‘ β†’ 𝐴 βŠ† 𝑋)    β‡’   (πœ‘ β†’ (π‘‚β€˜π΄) ≀ ((π‘‚β€˜(𝐴 ∩ 𝐸)) +𝑒 (π‘‚β€˜(𝐴 βˆ– 𝐸))))
 
Theoremomeiunltfirp 45221* If the outer measure of a countable union is not +∞, then it can be arbitrarily approximated by finite sums of outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘‹ = βˆͺ dom 𝑂    &   π‘ = (β„€β‰₯β€˜π‘)    &   (πœ‘ β†’ 𝐸:π‘βŸΆπ’« 𝑋)    &   (πœ‘ β†’ (π‘‚β€˜βˆͺ 𝑛 ∈ 𝑍 (πΈβ€˜π‘›)) ∈ ℝ)    &   (πœ‘ β†’ π‘Œ ∈ ℝ+)    β‡’   (πœ‘ β†’ βˆƒπ‘§ ∈ (𝒫 𝑍 ∩ Fin)(π‘‚β€˜βˆͺ 𝑛 ∈ 𝑍 (πΈβ€˜π‘›)) < (Σ𝑛 ∈ 𝑧 (π‘‚β€˜(πΈβ€˜π‘›)) + π‘Œ))
 
Theoremomeiunlempt 45222* The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
β„²π‘›πœ‘    &   (πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘‹ = βˆͺ dom 𝑂    &   π‘ = (β„€β‰₯β€˜π‘)    &   ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ 𝐸 βŠ† 𝑋)    β‡’   (πœ‘ β†’ (π‘‚β€˜βˆͺ 𝑛 ∈ 𝑍 𝐸) ≀ (Ξ£^β€˜(𝑛 ∈ 𝑍 ↦ (π‘‚β€˜πΈ))))
 
Theoremcarageniuncllem1 45223* The outer measure of 𝐴 ∩ (πΊβ€˜π‘›) is the sum of the outer measures of 𝐴 ∩ (πΉβ€˜π‘š). These are lines 7 to 10 of Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘† = (CaraGenβ€˜π‘‚)    &   π‘‹ = βˆͺ dom 𝑂    &   (πœ‘ β†’ 𝐴 βŠ† 𝑋)    &   (πœ‘ β†’ (π‘‚β€˜π΄) ∈ ℝ)    &   π‘ = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝐸:π‘βŸΆπ‘†)    &   πΊ = (𝑛 ∈ 𝑍 ↦ βˆͺ 𝑖 ∈ (𝑀...𝑛)(πΈβ€˜π‘–))    &   πΉ = (𝑛 ∈ 𝑍 ↦ ((πΈβ€˜π‘›) βˆ– βˆͺ 𝑖 ∈ (𝑀..^𝑛)(πΈβ€˜π‘–)))    &   (πœ‘ β†’ 𝐾 ∈ 𝑍)    β‡’   (πœ‘ β†’ Σ𝑛 ∈ (𝑀...𝐾)(π‘‚β€˜(𝐴 ∩ (πΉβ€˜π‘›))) = (π‘‚β€˜(𝐴 ∩ (πΊβ€˜πΎ))))
 
Theoremcarageniuncllem2 45224* The Caratheodory's construction is closed under countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘† = (CaraGenβ€˜π‘‚)    &   π‘‹ = βˆͺ dom 𝑂    &   (πœ‘ β†’ 𝐴 βŠ† 𝑋)    &   (πœ‘ β†’ (π‘‚β€˜π΄) ∈ ℝ)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   π‘ = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝐸:π‘βŸΆπ‘†)    &   (πœ‘ β†’ π‘Œ ∈ ℝ+)    &   πΊ = (𝑛 ∈ 𝑍 ↦ βˆͺ 𝑖 ∈ (𝑀...𝑛)(πΈβ€˜π‘–))    &   πΉ = (𝑛 ∈ 𝑍 ↦ ((πΈβ€˜π‘›) βˆ– βˆͺ 𝑖 ∈ (𝑀..^𝑛)(πΈβ€˜π‘–)))    β‡’   (πœ‘ β†’ ((π‘‚β€˜(𝐴 ∩ βˆͺ 𝑛 ∈ 𝑍 (πΈβ€˜π‘›))) +𝑒 (π‘‚β€˜(𝐴 βˆ– βˆͺ 𝑛 ∈ 𝑍 (πΈβ€˜π‘›)))) ≀ ((π‘‚β€˜π΄) + π‘Œ))
 
Theoremcarageniuncl 45225* The Caratheodory's construction is closed under indexed countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘† = (CaraGenβ€˜π‘‚)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   π‘ = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝐸:π‘βŸΆπ‘†)    β‡’   (πœ‘ β†’ βˆͺ 𝑛 ∈ 𝑍 (πΈβ€˜π‘›) ∈ 𝑆)
 
Theoremcaragenunicl 45226 The Caratheodory's construction is closed under countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘† = (CaraGenβ€˜π‘‚)    &   (πœ‘ β†’ 𝑋 βŠ† 𝑆)    &   (πœ‘ β†’ 𝑋 β‰Ό Ο‰)    β‡’   (πœ‘ β†’ βˆͺ 𝑋 ∈ 𝑆)
 
Theoremcaragensal 45227 Caratheodory's method generates a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘† = (CaraGenβ€˜π‘‚)    β‡’   (πœ‘ β†’ 𝑆 ∈ SAlg)
 
Theoremcaratheodorylem1 45228* Lemma used to prove that Caratheodory's construction is sigma-additive. This is the proof of the statement in the middle of Step (e) in the proof of Theorem 113C of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘† = (CaraGenβ€˜π‘‚)    &   π‘ = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝐸:π‘βŸΆπ‘†)    &   (πœ‘ β†’ Disj 𝑛 ∈ 𝑍 (πΈβ€˜π‘›))    &   πΊ = (𝑛 ∈ 𝑍 ↦ βˆͺ 𝑖 ∈ (𝑀...𝑛)(πΈβ€˜π‘–))    &   (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))    β‡’   (πœ‘ β†’ (π‘‚β€˜(πΊβ€˜π‘)) = (Ξ£^β€˜(𝑛 ∈ (𝑀...𝑁) ↦ (π‘‚β€˜(πΈβ€˜π‘›)))))
 
Theoremcaratheodorylem2 45229* Caratheodory's construction is sigma-additive. Main part of Step (e) in the proof of Theorem 113C of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘‹ = βˆͺ dom 𝑂    &   π‘† = (CaraGenβ€˜π‘‚)    &   (πœ‘ β†’ 𝐸:β„•βŸΆπ‘†)    &   (πœ‘ β†’ Disj 𝑛 ∈ β„• (πΈβ€˜π‘›))    &   πΊ = (π‘˜ ∈ β„• ↦ βˆͺ 𝑛 ∈ (1...π‘˜)(πΈβ€˜π‘›))    β‡’   (πœ‘ β†’ (π‘‚β€˜βˆͺ 𝑛 ∈ β„• (πΈβ€˜π‘›)) = (Ξ£^β€˜(𝑛 ∈ β„• ↦ (π‘‚β€˜(πΈβ€˜π‘›)))))
 
Theoremcaratheodory 45230 Caratheodory's construction of a measure given an outer measure. Proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘† = (CaraGenβ€˜π‘‚)    β‡’   (πœ‘ β†’ (𝑂 β†Ύ 𝑆) ∈ Meas)
 
Theorem0ome 45231* The map that assigns 0 to every subset, is an outer measure. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ 𝑉)    &   π‘‚ = (π‘₯ ∈ 𝒫 𝑋 ↦ 0)    β‡’   (πœ‘ β†’ 𝑂 ∈ OutMeas)
 
Theoremisomenndlem 45232* 𝑂 is sub-additive w.r.t. countable indexed union, implies that 𝑂 is sub-additive w.r.t. countable union. Thus, the definition of Outer Measure can be given using an indexed union. Definition 113A of [Fremlin1] p. 19 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑂:𝒫 π‘‹βŸΆ(0[,]+∞))    &   (πœ‘ β†’ (π‘‚β€˜βˆ…) = 0)    &   (πœ‘ β†’ π‘Œ βŠ† 𝒫 𝑋)    &   ((πœ‘ ∧ π‘Ž:β„•βŸΆπ’« 𝑋) β†’ (π‘‚β€˜βˆͺ 𝑛 ∈ β„• (π‘Žβ€˜π‘›)) ≀ (Ξ£^β€˜(𝑛 ∈ β„• ↦ (π‘‚β€˜(π‘Žβ€˜π‘›)))))    &   (πœ‘ β†’ 𝐡 βŠ† β„•)    &   (πœ‘ β†’ 𝐹:𝐡–1-1-ontoβ†’π‘Œ)    &   π΄ = (𝑛 ∈ β„• ↦ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…))    β‡’   (πœ‘ β†’ (π‘‚β€˜βˆͺ π‘Œ) ≀ (Ξ£^β€˜(𝑂 β†Ύ π‘Œ)))
 
Theoremisomennd 45233* Sufficient condition to prove that 𝑂 is an outer measure. Definition 113A of [Fremlin1] p. 19 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ 𝑂:𝒫 π‘‹βŸΆ(0[,]+∞))    &   (πœ‘ β†’ (π‘‚β€˜βˆ…) = 0)    &   ((πœ‘ ∧ π‘₯ βŠ† 𝑋 ∧ 𝑦 βŠ† π‘₯) β†’ (π‘‚β€˜π‘¦) ≀ (π‘‚β€˜π‘₯))    &   ((πœ‘ ∧ π‘Ž:β„•βŸΆπ’« 𝑋) β†’ (π‘‚β€˜βˆͺ 𝑛 ∈ β„• (π‘Žβ€˜π‘›)) ≀ (Ξ£^β€˜(𝑛 ∈ β„• ↦ (π‘‚β€˜(π‘Žβ€˜π‘›)))))    β‡’   (πœ‘ β†’ 𝑂 ∈ OutMeas)
 
Theoremcaragenel2d 45234* Membership in the Caratheodory's construction. Similar to carageneld 45204, but here "less then or equal to" is used, instead of equality. This is Remark 113D of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘‹ = βˆͺ dom 𝑂    &   π‘† = (CaraGenβ€˜π‘‚)    &   (πœ‘ β†’ 𝐸 ∈ 𝒫 𝑋)    &   ((πœ‘ ∧ π‘Ž ∈ 𝒫 𝑋) β†’ ((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) ≀ (π‘‚β€˜π‘Ž))    β‡’   (πœ‘ β†’ 𝐸 ∈ 𝑆)
 
Theoremomege0 45235 If the outer measure of a set is greater than or equal to 0. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘‹ = βˆͺ dom 𝑂    &   (πœ‘ β†’ 𝐴 βŠ† 𝑋)    β‡’   (πœ‘ β†’ 0 ≀ (π‘‚β€˜π΄))
 
Theoremomess0 45236 If the outer measure of a set is 0, then the outer measure of its subsets is 0. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘‹ = βˆͺ dom 𝑂    &   (πœ‘ β†’ 𝐴 βŠ† 𝑋)    &   (πœ‘ β†’ (π‘‚β€˜π΄) = 0)    &   (πœ‘ β†’ 𝐡 βŠ† 𝐴)    β‡’   (πœ‘ β†’ (π‘‚β€˜π΅) = 0)
 
Theoremcaragencmpl 45237 A measure built with the Caratheodory's construction is complete. See Definition 112Df of [Fremlin1] p. 19. This is Exercise 113Xa of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝑂 ∈ OutMeas)    &   π‘‹ = βˆͺ dom 𝑂    &   (πœ‘ β†’ 𝐸 βŠ† 𝑋)    &   (πœ‘ β†’ (π‘‚β€˜πΈ) = 0)    &   π‘† = (CaraGenβ€˜π‘‚)    β‡’   (πœ‘ β†’ 𝐸 ∈ 𝑆)
 
21.40.19.5  Lebesgue measure on n-dimensional Real numbers

Proofs for most of the theorems in section 115 of [Fremlin1]

 
Syntaxcovoln 45238 Extend class notation with the class of Lebesgue outer measure for the space of multidimensional real numbers.
class voln*
 
Definitiondf-ovoln 45239* Define the outer measure for the space of multidimensional real numbers. The cardinality of π‘₯ is the dimension of the space modeled. Definition 115C of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
voln* = (π‘₯ ∈ Fin ↦ (𝑦 ∈ 𝒫 (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, inf({𝑧 ∈ ℝ* ∣ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m π‘₯) ↑m β„•)(𝑦 βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ π‘₯ (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ 𝑧 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ π‘₯ (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜)))))}, ℝ*, < ))))
 
Syntaxcvoln 45240 Extend class notation with the class of Lebesgue measure for the space of multidimensional real numbers.
class voln
 
Definitiondf-voln 45241 Define the Lebesgue measure for the space of multidimensional real numbers. The cardinality of π‘₯ is the dimension of the space modeled. Definition 115C of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
voln = (π‘₯ ∈ Fin ↦ ((voln*β€˜π‘₯) β†Ύ (CaraGenβ€˜(voln*β€˜π‘₯))))
 
Theoremvonval 45242 Value of the Lebesgue measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    β‡’   (πœ‘ β†’ (volnβ€˜π‘‹) = ((voln*β€˜π‘‹) β†Ύ (CaraGenβ€˜(voln*β€˜π‘‹))))
 
Theoremovnval 45243* Value of the Lebesgue outer measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    β‡’   (πœ‘ β†’ (voln*β€˜π‘‹) = (𝑦 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ if(𝑋 = βˆ…, 0, inf({𝑧 ∈ ℝ* ∣ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•)(𝑦 βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ 𝑧 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜)))))}, ℝ*, < ))))
 
Theoremelhoi 45244* Membership in a multidimensional half-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ 𝑉)    β‡’   (πœ‘ β†’ (π‘Œ ∈ ((𝐴[,)𝐡) ↑m 𝑋) ↔ (π‘Œ:π‘‹βŸΆβ„* ∧ βˆ€π‘₯ ∈ 𝑋 (π‘Œβ€˜π‘₯) ∈ (𝐴[,)𝐡))))
 
Theoremicoresmbl 45245 A closed-below, open-above real interval is measurable, when the bounds are real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
ran ([,) β†Ύ (ℝ Γ— ℝ)) βŠ† dom vol
 
Theoremhoissre 45246* The projection of a half-open interval onto a single dimension is a subset of ℝ. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝐼:π‘‹βŸΆ(ℝ Γ— ℝ))    β‡’   ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ (([,) ∘ 𝐼)β€˜π‘˜) βŠ† ℝ)
 
Theoremovnval2 45247* Value of the Lebesgue outer measure of a subset 𝐴 of the space of multidimensional real numbers. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴 βŠ† (ℝ ↑m 𝑋))    &   π‘€ = {𝑧 ∈ ℝ* ∣ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•)(𝐴 βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ 𝑧 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜)))))}    β‡’   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜π΄) = if(𝑋 = βˆ…, 0, inf(𝑀, ℝ*, < )))
 
Theoremvolicorecl 45248 The Lebesgue measure of a left-closed, right-open interval with real bounds, is real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (volβ€˜(𝐴[,)𝐡)) ∈ ℝ)
 
Theoremhoiprodcl 45249* The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
β„²π‘˜πœ‘    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐼:π‘‹βŸΆ(ℝ Γ— ℝ))    β‡’   (πœ‘ β†’ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ 𝐼)β€˜π‘˜)) ∈ (0[,)+∞))
 
Theoremhoicvr 45250* 𝐼 is a countable set of half-open intervals that covers the whole multidimensional reals. See Definition 1135 (b) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
𝐼 = (𝑗 ∈ β„• ↦ (π‘₯ ∈ 𝑋 ↦ ⟨-𝑗, π‘—βŸ©))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    β‡’   (πœ‘ β†’ (ℝ ↑m 𝑋) βŠ† βˆͺ 𝑗 ∈ β„• X𝑖 ∈ 𝑋 (([,) ∘ (πΌβ€˜π‘—))β€˜π‘–))
 
Theoremhoissrrn 45251* A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝐼:π‘‹βŸΆ(ℝ Γ— ℝ))    β‡’   (πœ‘ β†’ Xπ‘˜ ∈ 𝑋 (([,) ∘ 𝐼)β€˜π‘˜) βŠ† (ℝ ↑m 𝑋))
 
Theoremovn0val 45252 The Lebesgue outer measure (for the zero dimensional space of reals) of every subset is zero. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝐴 βŠ† (ℝ ↑m βˆ…))    β‡’   (πœ‘ β†’ ((voln*β€˜βˆ…)β€˜π΄) = 0)
 
Theoremovnn0val 45253* The value of a (multidimensional) Lebesgue outer measure, defined on a nonzero-dimensional space of reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   (πœ‘ β†’ 𝐴 βŠ† (ℝ ↑m 𝑋))    &   π‘€ = {𝑧 ∈ ℝ* ∣ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•)(𝐴 βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ 𝑧 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜)))))}    β‡’   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜π΄) = inf(𝑀, ℝ*, < ))
 
Theoremovnval2b 45254* Value of the Lebesgue outer measure of a subset 𝐴 of the space of multidimensional real numbers. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴 βŠ† (ℝ ↑m 𝑋))    &   πΏ = (π‘Ž ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•)(π‘Ž βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ 𝑧 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜)))))})    β‡’   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜π΄) = if(𝑋 = βˆ…, 0, inf((πΏβ€˜π΄), ℝ*, < )))
 
Theoremvolicorescl 45255 The Lebesgue measure of a left-closed, right-open interval with real bounds, is real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝐴 ∈ ran ([,) β†Ύ (ℝ Γ— ℝ)) β†’ (volβ€˜π΄) ∈ ℝ)
 
Theoremovnprodcl 45256* The product used in the definition of the outer Lebesgue measure in R^n is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
β„²π‘˜πœ‘    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐹:β„•βŸΆ((ℝ Γ— ℝ) ↑m 𝑋))    &   (πœ‘ β†’ 𝐼 ∈ β„•)    β‡’   (πœ‘ β†’ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ (πΉβ€˜πΌ))β€˜π‘˜)) ∈ (0[,)+∞))
 
Theoremhoiprodcl2 45257* The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
β„²π‘˜πœ‘    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   πΏ = (𝑖 ∈ ((ℝ Γ— ℝ) ↑m 𝑋) ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ 𝑖)β€˜π‘˜)))    &   (πœ‘ β†’ 𝐼:π‘‹βŸΆ(ℝ Γ— ℝ))    β‡’   (πœ‘ β†’ (πΏβ€˜πΌ) ∈ (0[,)+∞))
 
Theoremhoicvrrex 45258* Any subset of the multidimensional reals can be covered by a countable set of half-open intervals, see Definition 115A (b) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ π‘Œ βŠ† (ℝ ↑m 𝑋))    β‡’   (πœ‘ β†’ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•)(π‘Œ βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ +∞ = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜))))))
 
Theoremovnsupge0 45259* The set used in the definition of the Lebesgue outer measure is a subset of the nonnegative extended reals. This is a substep for (a)(i) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴 βŠ† (ℝ ↑m 𝑋))    &   π‘€ = {𝑧 ∈ ℝ* ∣ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•)(𝐴 βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ 𝑧 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜)))))}    β‡’   (πœ‘ β†’ 𝑀 βŠ† (0[,]+∞))
 
Theoremovnlecvr 45260* Given a subset of multidimensional reals and a set of half-open intervals that covers it, the Lebesgue outer measure of the set is bounded by the generalized sum of the pre-measure of the half-open intervals. The statement would also be true with 𝑋 the empty set, but covers are not used for the zero-dimensional case. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   πΏ = (𝑖 ∈ ((ℝ Γ— ℝ) ↑m 𝑋) ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ 𝑖)β€˜π‘˜)))    &   (πœ‘ β†’ 𝐼:β„•βŸΆ((ℝ Γ— ℝ) ↑m 𝑋))    &   (πœ‘ β†’ 𝐴 βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜))    β‡’   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜π΄) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (πΏβ€˜(πΌβ€˜π‘—)))))
 
Theoremovnpnfelsup 45261* +∞ is an element of the set used in the definition of the Lebesgue outer measure. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴 βŠ† (ℝ ↑m 𝑋))    &   π‘€ = {𝑧 ∈ ℝ* ∣ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•)(𝐴 βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ 𝑧 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜)))))}    β‡’   (πœ‘ β†’ +∞ ∈ 𝑀)
 
Theoremovnsslelem 45262* The (multidimensional, nonzero-dimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   (πœ‘ β†’ 𝐴 βŠ† 𝐡)    &   (πœ‘ β†’ 𝐡 βŠ† (ℝ ↑m 𝑋))    &   π‘€ = {𝑧 ∈ ℝ* ∣ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•)(𝐴 βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ 𝑧 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜)))))}    &   π‘ = {𝑧 ∈ ℝ* ∣ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•)(𝐡 βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ 𝑧 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜)))))}    β‡’   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜π΄) ≀ ((voln*β€˜π‘‹)β€˜π΅))
 
Theoremovnssle 45263 The (multidimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴 βŠ† 𝐡)    &   (πœ‘ β†’ 𝐡 βŠ† (ℝ ↑m 𝑋))    β‡’   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜π΄) ≀ ((voln*β€˜π‘‹)β€˜π΅))
 
Theoremovnlerp 45264* The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   (πœ‘ β†’ 𝐴 βŠ† (ℝ ↑m 𝑋))    &   (πœ‘ β†’ 𝐸 ∈ ℝ+)    &   π‘€ = {𝑧 ∈ ℝ* ∣ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•)(𝐴 βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ 𝑧 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜)))))}    β‡’   (πœ‘ β†’ βˆƒπ‘§ ∈ 𝑀 𝑧 ≀ (((voln*β€˜π‘‹)β€˜π΄) +𝑒 𝐸))
 
Theoremovnf 45265 The Lebesgue outer measure is a function that maps sets to nonnegative extended reals. This is step (a)(i) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    β‡’   (πœ‘ β†’ (voln*β€˜π‘‹):𝒫 (ℝ ↑m 𝑋)⟢(0[,]+∞))
 
Theoremovncvrrp 45266* The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   (πœ‘ β†’ 𝐴 βŠ† (ℝ ↑m 𝑋))    &   (πœ‘ β†’ 𝐸 ∈ ℝ+)    &   πΆ = (π‘Ž ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•) ∣ π‘Ž βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (([,) ∘ (π‘™β€˜π‘—))β€˜π‘˜)})    &   πΏ = (β„Ž ∈ ((ℝ Γ— ℝ) ↑m 𝑋) ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ β„Ž)β€˜π‘˜)))    &   π· = (π‘Ž ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (πΆβ€˜π‘Ž) ∣ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (πΏβ€˜(π‘–β€˜π‘—)))) ≀ (((voln*β€˜π‘‹)β€˜π‘Ž) +𝑒 𝑒)}))    β‡’   (πœ‘ β†’ βˆƒπ‘– 𝑖 ∈ ((π·β€˜π΄)β€˜πΈ))
 
Theoremovn0lem 45267* For any finite dimension, the Lebesgue outer measure of the empty set is zero. This is step (a)(ii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   π‘€ = {𝑧 ∈ ℝ* ∣ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•)𝑧 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜))))}    &   (πœ‘ β†’ inf(𝑀, ℝ*, < ) ∈ (0[,]+∞))    &   πΌ = (𝑗 ∈ β„• ↦ (𝑙 ∈ 𝑋 ↦ ⟨1, 0⟩))    β‡’   (πœ‘ β†’ inf(𝑀, ℝ*, < ) = 0)
 
Theoremovn0 45268 For any finite dimension, the Lebesgue outer measure of the empty set is zero. This is step (ii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    β‡’   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜βˆ…) = 0)
 
Theoremovncl 45269 The Lebesgue outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴 βŠ† (ℝ ↑m 𝑋))    β‡’   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜π΄) ∈ (0[,]+∞))
 
Theoremovn02 45270 For the zero-dimensional space, voln* assigns zero to every subset. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(voln*β€˜βˆ…) = (π‘₯ ∈ 𝒫 {βˆ…} ↦ 0)
 
Theoremovnxrcl 45271 The Lebesgue outer measure of a set is an extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴 βŠ† (ℝ ↑m 𝑋))    β‡’   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜π΄) ∈ ℝ*)
 
Theoremovnsubaddlem1 45272* The Lebesgue outer measure is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   (πœ‘ β†’ 𝐴:β„•βŸΆπ’« (ℝ ↑m 𝑋))    &   (πœ‘ β†’ 𝐸 ∈ ℝ+)    &   π‘ = (π‘Ž ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•)(π‘Ž βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ 𝑧 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜)))))})    &   πΆ = (π‘Ž ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {β„Ž ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•) ∣ π‘Ž βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (([,) ∘ (β„Žβ€˜π‘—))β€˜π‘˜)})    &   πΏ = (𝑖 ∈ ((ℝ Γ— ℝ) ↑m 𝑋) ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ 𝑖)β€˜π‘˜)))    &   π· = (π‘Ž ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (πΆβ€˜π‘Ž) ∣ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (πΏβ€˜(π‘–β€˜π‘—)))) ≀ (((voln*β€˜π‘‹)β€˜π‘Ž) +𝑒 𝑒)}))    &   ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (πΌβ€˜π‘›) ∈ ((π·β€˜(π΄β€˜π‘›))β€˜(𝐸 / (2↑𝑛))))    &   (πœ‘ β†’ 𝐹:ℕ–1-1-ontoβ†’(β„• Γ— β„•))    &   πΊ = (π‘š ∈ β„• ↦ ((πΌβ€˜(1st β€˜(πΉβ€˜π‘š)))β€˜(2nd β€˜(πΉβ€˜π‘š))))    β‡’   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜βˆͺ 𝑛 ∈ β„• (π΄β€˜π‘›)) ≀ ((Ξ£^β€˜(𝑛 ∈ β„• ↦ ((voln*β€˜π‘‹)β€˜(π΄β€˜π‘›)))) +𝑒 𝐸))
 
Theoremovnsubaddlem2 45273* (voln*β€˜π‘‹) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   (πœ‘ β†’ 𝐴:β„•βŸΆπ’« (ℝ ↑m 𝑋))    &   (πœ‘ β†’ 𝐸 ∈ ℝ+)    &   π‘ = (π‘Ž ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•)(π‘Ž βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ 𝑧 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜)))))})    &   πΆ = (π‘Ž ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•) ∣ π‘Ž βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (([,) ∘ (π‘™β€˜π‘—))β€˜π‘˜)})    &   πΏ = (β„Ž ∈ ((ℝ Γ— ℝ) ↑m 𝑋) ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ β„Ž)β€˜π‘˜)))    &   π· = (π‘Ž ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (πΆβ€˜π‘Ž) ∣ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (πΏβ€˜(π‘–β€˜π‘—)))) ≀ (((voln*β€˜π‘‹)β€˜π‘Ž) +𝑒 𝑒)}))    β‡’   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜βˆͺ 𝑛 ∈ β„• (π΄β€˜π‘›)) ≀ ((Ξ£^β€˜(𝑛 ∈ β„• ↦ ((voln*β€˜π‘‹)β€˜(π΄β€˜π‘›)))) +𝑒 𝐸))
 
Theoremovnsubadd 45274* (voln*β€˜π‘‹) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴:β„•βŸΆπ’« (ℝ ↑m 𝑋))    β‡’   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜βˆͺ 𝑛 ∈ β„• (π΄β€˜π‘›)) ≀ (Ξ£^β€˜(𝑛 ∈ β„• ↦ ((voln*β€˜π‘‹)β€˜(π΄β€˜π‘›)))))
 
Theoremovnome 45275 (voln*β€˜π‘‹) is an outer measure on the space of multidimensional real numbers with dimension equal to the cardinality of the finite set 𝑋. Proposition 115D (a) of [Fremlin1] p. 30 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    β‡’   (πœ‘ β†’ (voln*β€˜π‘‹) ∈ OutMeas)
 
Theoremvonmea 45276 (volnβ€˜π‘‹) is a measure on the space of multidimensional real numbers with dimension equal to the cardinality of the finite set 𝑋. Comments in Definition 115E of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    β‡’   (πœ‘ β†’ (volnβ€˜π‘‹) ∈ Meas)
 
Theoremvolicon0 45277 The measure of a nonempty left-closed, right-open interval. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐴 < 𝐡)    β‡’   (πœ‘ β†’ (volβ€˜(𝐴[,)𝐡)) = (𝐡 βˆ’ 𝐴))
 
Theoremhsphoif 45278* 𝐻 is a function (that returns the representation of the right side of a half-open interval intersected with a half-space). Step (b) in Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐻 = (π‘₯ ∈ ℝ ↦ (π‘Ž ∈ (ℝ ↑m 𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ π‘Œ, (π‘Žβ€˜π‘—), if((π‘Žβ€˜π‘—) ≀ π‘₯, (π‘Žβ€˜π‘—), π‘₯)))))    &   (πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    β‡’   (πœ‘ β†’ ((π»β€˜π΄)β€˜π΅):π‘‹βŸΆβ„)
 
Theoremhoidmvval 45279* The dimensional volume of a multidimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝑋 ∈ Fin)    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜π‘‹)𝐡) = if(𝑋 = βˆ…, 0, βˆπ‘˜ ∈ 𝑋 (volβ€˜((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜)))))
 
Theoremhoissrrn2 45280* A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 21-Nov-2020.)
β„²π‘˜πœ‘    &   ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ 𝐴 ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ 𝐡 ∈ ℝ*)    β‡’   (πœ‘ β†’ Xπ‘˜ ∈ 𝑋 (𝐴[,)𝐡) βŠ† (ℝ ↑m 𝑋))
 
Theoremhsphoival 45281* 𝐻 is a function (that returns the representation of the right side of a half-open interval intersected with a half-space). Step (b) in Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐻 = (π‘₯ ∈ ℝ ↦ (π‘Ž ∈ (ℝ ↑m 𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ π‘Œ, (π‘Žβ€˜π‘—), if((π‘Žβ€˜π‘—) ≀ π‘₯, (π‘Žβ€˜π‘—), π‘₯)))))    &   (πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐾 ∈ 𝑋)    β‡’   (πœ‘ β†’ (((π»β€˜π΄)β€˜π΅)β€˜πΎ) = if(𝐾 ∈ π‘Œ, (π΅β€˜πΎ), if((π΅β€˜πΎ) ≀ 𝐴, (π΅β€˜πΎ), 𝐴)))
 
Theoremhoiprodcl3 45282* The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
β„²π‘˜πœ‘    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ 𝐴 ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ 𝐡 ∈ ℝ)    β‡’   (πœ‘ β†’ βˆπ‘˜ ∈ 𝑋 (volβ€˜(𝐴[,)𝐡)) ∈ (0[,)+∞))
 
Theoremvolicore 45283 The Lebesgue measure of a left-closed right-open interval is a real number. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (volβ€˜(𝐴[,)𝐡)) ∈ ℝ)
 
Theoremhoidmvcl 45284* The dimensional volume of a multidimensional half-open interval is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜π‘‹)𝐡) ∈ (0[,)+∞))
 
Theoremhoidmv0val 45285* The dimensional volume of a 0-dimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝐴:βˆ…βŸΆβ„)    &   (πœ‘ β†’ 𝐡:βˆ…βŸΆβ„)    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜βˆ…)𝐡) = 0)
 
Theoremhoidmvn0val 45286* The dimensional volume of a non-0-dimensional half-open interval. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜π‘‹)𝐡) = βˆπ‘˜ ∈ 𝑋 (volβ€˜((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜))))
 
Theoremhsphoidmvle2 45287* The dimensional volume of a half-open interval intersected with a two half-spaces. Used in the last inequality of step (c) of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑍 ∈ (𝑋 βˆ– π‘Œ))    &   π‘‹ = (π‘Œ βˆͺ {𝑍})    &   (πœ‘ β†’ 𝐢 ∈ ℝ)    &   (πœ‘ β†’ 𝐷 ∈ ℝ)    &   (πœ‘ β†’ 𝐢 ≀ 𝐷)    &   π» = (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ π‘Œ, (π‘β€˜π‘—), if((π‘β€˜π‘—) ≀ π‘₯, (π‘β€˜π‘—), π‘₯)))))    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜π‘‹)((π»β€˜πΆ)β€˜π΅)) ≀ (𝐴(πΏβ€˜π‘‹)((π»β€˜π·)β€˜π΅)))
 
Theoremhsphoidmvle 45288* The dimensional volume of a half-open interval intersected with a half-space, is less than or equal to the dimensional volume of the original half-open interval. Used in the last inequality of step (e) of Lemma 115B of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑍 ∈ (𝑋 βˆ– π‘Œ))    &   π‘‹ = (π‘Œ βˆͺ {𝑍})    &   (πœ‘ β†’ 𝐢 ∈ ℝ)    &   π» = (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ π‘Œ, (π‘β€˜π‘—), if((π‘β€˜π‘—) ≀ π‘₯, (π‘β€˜π‘—), π‘₯)))))    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜π‘‹)((π»β€˜πΆ)β€˜π΅)) ≀ (𝐴(πΏβ€˜π‘‹)𝐡))
 
Theoremhoidmvval0 45289* The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
β„²π‘—πœ‘    &   πΏ = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   (πœ‘ β†’ βˆƒπ‘— ∈ 𝑋 (π΅β€˜π‘—) ≀ (π΄β€˜π‘—))    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜π‘‹)𝐡) = 0)
 
Theoremhoiprodp1 45290* The dimensional volume of a half-open interval with dimension 𝑛 + 1. Used in the first equality of step (e) of Lemma 115B of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ π‘Œ ∈ Fin)    &   (πœ‘ β†’ 𝑍 ∈ 𝑉)    &   (πœ‘ β†’ Β¬ 𝑍 ∈ π‘Œ)    &   π‘‹ = (π‘Œ βˆͺ {𝑍})    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   πΊ = βˆπ‘˜ ∈ π‘Œ (volβ€˜((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜)))    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜π‘‹)𝐡) = (𝐺 Β· (volβ€˜((π΄β€˜π‘)[,)(π΅β€˜π‘)))))
 
Theoremsge0hsphoire 45291* If the generalized sum of dimensional volumes of n-dimensional half-open intervals is finite, then the sum stays finite if every half-open interval is intersected with a half-space. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ π‘Œ ∈ Fin)    &   (πœ‘ β†’ 𝑍 ∈ (π‘Š βˆ– π‘Œ))    &   π‘Š = (π‘Œ βˆͺ {𝑍})    &   (πœ‘ β†’ 𝐢:β„•βŸΆ(ℝ ↑m π‘Š))    &   (πœ‘ β†’ 𝐷:β„•βŸΆ(ℝ ↑m π‘Š))    &   (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)(π·β€˜π‘—)))) ∈ ℝ)    &   π» = (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m π‘Š) ↦ (𝑗 ∈ π‘Š ↦ if(𝑗 ∈ π‘Œ, (π‘β€˜π‘—), if((π‘β€˜π‘—) ≀ π‘₯, (π‘β€˜π‘—), π‘₯)))))    &   (πœ‘ β†’ 𝑆 ∈ ℝ)    β‡’   (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘†)β€˜(π·β€˜π‘—))))) ∈ ℝ)
 
Theoremhoidmvval0b 45292* The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜π‘‹)𝐴) = 0)
 
Theoremhoidmv1lelem1 45293* The supremum of π‘ˆ belongs to π‘ˆ. This is the last part of step (a) and the whole step (b) in the proof of Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐴 < 𝐡)    &   (πœ‘ β†’ 𝐢:β„•βŸΆβ„)    &   (πœ‘ β†’ 𝐷:β„•βŸΆβ„)    &   (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)(π·β€˜π‘—))))) ∈ ℝ)    &   π‘ˆ = {𝑧 ∈ (𝐴[,]𝐡) ∣ (𝑧 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧)))))}    &   π‘† = sup(π‘ˆ, ℝ, < )    β‡’   (πœ‘ β†’ (𝑆 ∈ π‘ˆ ∧ 𝐴 ∈ π‘ˆ ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ π‘ˆ 𝑦 ≀ π‘₯))
 
Theoremhoidmv1lelem2 45294* This is the contradiction proven in step (c) in the proof of Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐢:β„•βŸΆβ„)    &   (πœ‘ β†’ 𝐷:β„•βŸΆβ„)    &   (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)(π·β€˜π‘—))))) ∈ ℝ)    &   π‘ˆ = {𝑧 ∈ (𝐴[,]𝐡) ∣ (𝑧 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧)))))}    &   (πœ‘ β†’ 𝑆 ∈ π‘ˆ)    &   (πœ‘ β†’ 𝐴 ≀ 𝑆)    &   (πœ‘ β†’ 𝑆 < 𝐡)    &   (πœ‘ β†’ 𝐾 ∈ β„•)    &   (πœ‘ β†’ 𝑆 ∈ ((πΆβ€˜πΎ)[,)(π·β€˜πΎ)))    &   π‘€ = if((π·β€˜πΎ) ≀ 𝐡, (π·β€˜πΎ), 𝐡)    β‡’   (πœ‘ β†’ βˆƒπ‘’ ∈ π‘ˆ 𝑆 < 𝑒)
 
Theoremhoidmv1lelem3 45295* The dimensional volume of a 1-dimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. This is the nonempty, finite generalized sum, sub case in Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐴 < 𝐡)    &   (πœ‘ β†’ 𝐢:β„•βŸΆβ„)    &   (πœ‘ β†’ 𝐷:β„•βŸΆβ„)    &   (πœ‘ β†’ (𝐴[,)𝐡) βŠ† βˆͺ 𝑗 ∈ β„• ((πΆβ€˜π‘—)[,)(π·β€˜π‘—)))    &   (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)(π·β€˜π‘—))))) ∈ ℝ)    &   π‘ˆ = {𝑧 ∈ (𝐴[,]𝐡) ∣ (𝑧 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧)))))}    &   π‘† = sup(π‘ˆ, ℝ, < )    β‡’   (πœ‘ β†’ (𝐡 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)(π·β€˜π‘—))))))
 
Theoremhoidmv1le 45296* The dimensional volume of a 1-dimensional half-open interval is less than or equal to the generalized sum of the dimensional volumes of countable half-open intervals that cover it. This is one of the two base cases of the induction of Lemma 115B of [Fremlin1] p. 29 (the other base case is the 0-dimensional case). This proof of the 1-dimensional case is given in Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑍 ∈ 𝑉)    &   π‘‹ = {𝑍}    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐢:β„•βŸΆ(ℝ ↑m 𝑋))    &   (πœ‘ β†’ 𝐷:β„•βŸΆ(ℝ ↑m 𝑋))    &   (πœ‘ β†’ Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜)) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (((πΆβ€˜π‘—)β€˜π‘˜)[,)((π·β€˜π‘—)β€˜π‘˜)))    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜π‘‹)𝐡) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘‹)(π·β€˜π‘—)))))
 
Theoremhoidmvlelem1 45297* The supremum of π‘ˆ belongs to π‘ˆ. Step (c) in the proof of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ π‘Œ βŠ† 𝑋)    &   (πœ‘ β†’ 𝑍 ∈ (𝑋 βˆ– π‘Œ))    &   π‘Š = (π‘Œ βˆͺ {𝑍})    &   (πœ‘ β†’ 𝐴:π‘ŠβŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘ŠβŸΆβ„)    &   (πœ‘ β†’ 𝐢:β„•βŸΆ(ℝ ↑m π‘Š))    &   (πœ‘ β†’ 𝐷:β„•βŸΆ(ℝ ↑m π‘Š))    &   (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)(π·β€˜π‘—)))) ∈ ℝ)    &   π» = (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m π‘Š) ↦ (𝑗 ∈ π‘Š ↦ if(𝑗 ∈ π‘Œ, (π‘β€˜π‘—), if((π‘β€˜π‘—) ≀ π‘₯, (π‘β€˜π‘—), π‘₯)))))    &   πΊ = ((𝐴 β†Ύ π‘Œ)(πΏβ€˜π‘Œ)(𝐡 β†Ύ π‘Œ))    &   (πœ‘ β†’ 𝐸 ∈ ℝ+)    &   π‘ˆ = {𝑧 ∈ ((π΄β€˜π‘)[,](π΅β€˜π‘)) ∣ (𝐺 Β· (𝑧 βˆ’ (π΄β€˜π‘))) ≀ ((1 + 𝐸) Β· (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘§)β€˜(π·β€˜π‘—))))))}    &   π‘† = sup(π‘ˆ, ℝ, < )    &   (πœ‘ β†’ (π΄β€˜π‘) < (π΅β€˜π‘))    β‡’   (πœ‘ β†’ 𝑆 ∈ π‘ˆ)
 
Theoremhoidmvlelem2 45298* This is the contradiction proven in step (d) in the proof of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ π‘Œ βŠ† 𝑋)    &   (πœ‘ β†’ 𝑍 ∈ (𝑋 βˆ– π‘Œ))    &   π‘Š = (π‘Œ βˆͺ {𝑍})    &   (πœ‘ β†’ 𝐴:π‘ŠβŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘ŠβŸΆβ„)    &   (πœ‘ β†’ 𝐢:β„•βŸΆ(ℝ ↑m π‘Š))    &   πΉ = (𝑦 ∈ π‘Œ ↦ 0)    &   π½ = (𝑗 ∈ β„• ↦ if(𝑆 ∈ (((πΆβ€˜π‘—)β€˜π‘)[,)((π·β€˜π‘—)β€˜π‘)), ((πΆβ€˜π‘—) β†Ύ π‘Œ), 𝐹))    &   (πœ‘ β†’ 𝐷:β„•βŸΆ(ℝ ↑m π‘Š))    &   πΎ = (𝑗 ∈ β„• ↦ if(𝑆 ∈ (((πΆβ€˜π‘—)β€˜π‘)[,)((π·β€˜π‘—)β€˜π‘)), ((π·β€˜π‘—) β†Ύ π‘Œ), 𝐹))    &   (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)(π·β€˜π‘—)))) ∈ ℝ)    &   π» = (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m π‘Š) ↦ (𝑗 ∈ π‘Š ↦ if(𝑗 ∈ π‘Œ, (π‘β€˜π‘—), if((π‘β€˜π‘—) ≀ π‘₯, (π‘β€˜π‘—), π‘₯)))))    &   πΊ = ((𝐴 β†Ύ π‘Œ)(πΏβ€˜π‘Œ)(𝐡 β†Ύ π‘Œ))    &   (πœ‘ β†’ 𝐸 ∈ ℝ+)    &   π‘ˆ = {𝑧 ∈ ((π΄β€˜π‘)[,](π΅β€˜π‘)) ∣ (𝐺 Β· (𝑧 βˆ’ (π΄β€˜π‘))) ≀ ((1 + 𝐸) Β· (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘§)β€˜(π·β€˜π‘—))))))}    &   (πœ‘ β†’ 𝑆 ∈ π‘ˆ)    &   (πœ‘ β†’ 𝑆 < (π΅β€˜π‘))    &   π‘ƒ = (𝑗 ∈ β„• ↦ ((π½β€˜π‘—)(πΏβ€˜π‘Œ)(πΎβ€˜π‘—)))    &   (πœ‘ β†’ 𝑀 ∈ β„•)    &   (πœ‘ β†’ 𝐺 ≀ ((1 + 𝐸) Β· Σ𝑗 ∈ (1...𝑀)(π‘ƒβ€˜π‘—)))    &   π‘‚ = ran (𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((πΆβ€˜π‘—)β€˜π‘)[,)((π·β€˜π‘—)β€˜π‘))} ↦ ((π·β€˜π‘–)β€˜π‘))    &   π‘‰ = ({(π΅β€˜π‘)} βˆͺ 𝑂)    &   π‘„ = inf(𝑉, ℝ, < )    β‡’   (πœ‘ β†’ βˆƒπ‘’ ∈ π‘ˆ 𝑆 < 𝑒)
 
Theoremhoidmvlelem3 45299* This is the contradiction proven in step (d) in the proof of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ π‘Œ βŠ† 𝑋)    &   (πœ‘ β†’ 𝑍 ∈ (𝑋 βˆ– π‘Œ))    &   π‘Š = (π‘Œ βˆͺ {𝑍})    &   (πœ‘ β†’ 𝐴:π‘ŠβŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘ŠβŸΆβ„)    &   ((πœ‘ ∧ π‘˜ ∈ π‘Š) β†’ (π΄β€˜π‘˜) < (π΅β€˜π‘˜))    &   πΉ = (𝑦 ∈ π‘Œ ↦ 0)    &   (πœ‘ β†’ 𝐢:β„•βŸΆ(ℝ ↑m π‘Š))    &   π½ = (𝑗 ∈ β„• ↦ if(𝑆 ∈ (((πΆβ€˜π‘—)β€˜π‘)[,)((π·β€˜π‘—)β€˜π‘)), ((πΆβ€˜π‘—) β†Ύ π‘Œ), 𝐹))    &   (πœ‘ β†’ 𝐷:β„•βŸΆ(ℝ ↑m π‘Š))    &   πΎ = (𝑗 ∈ β„• ↦ if(𝑆 ∈ (((πΆβ€˜π‘—)β€˜π‘)[,)((π·β€˜π‘—)β€˜π‘)), ((π·β€˜π‘—) β†Ύ π‘Œ), 𝐹))    &   (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)(π·β€˜π‘—)))) ∈ ℝ)    &   π» = (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m π‘Š) ↦ (𝑗 ∈ π‘Š ↦ if(𝑗 ∈ π‘Œ, (π‘β€˜π‘—), if((π‘β€˜π‘—) ≀ π‘₯, (π‘β€˜π‘—), π‘₯)))))    &   πΊ = ((𝐴 β†Ύ π‘Œ)(πΏβ€˜π‘Œ)(𝐡 β†Ύ π‘Œ))    &   (πœ‘ β†’ 𝐸 ∈ ℝ+)    &   π‘ˆ = {𝑧 ∈ ((π΄β€˜π‘)[,](π΅β€˜π‘)) ∣ (𝐺 Β· (𝑧 βˆ’ (π΄β€˜π‘))) ≀ ((1 + 𝐸) Β· (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘§)β€˜(π·β€˜π‘—))))))}    &   (πœ‘ β†’ 𝑆 ∈ π‘ˆ)    &   (πœ‘ β†’ 𝑆 < (π΅β€˜π‘))    &   π‘ƒ = (𝑗 ∈ β„• ↦ ((π½β€˜π‘—)(πΏβ€˜π‘Œ)(πΎβ€˜π‘—)))    &   (πœ‘ β†’ βˆ€π‘’ ∈ (ℝ ↑m π‘Œ)βˆ€π‘“ ∈ (ℝ ↑m π‘Œ)βˆ€π‘” ∈ ((ℝ ↑m π‘Œ) ↑m β„•)βˆ€β„Ž ∈ ((ℝ ↑m π‘Œ) ↑m β„•)(Xπ‘˜ ∈ π‘Œ ((π‘’β€˜π‘˜)[,)(π‘“β€˜π‘˜)) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ π‘Œ (((π‘”β€˜π‘—)β€˜π‘˜)[,)((β„Žβ€˜π‘—)β€˜π‘˜)) β†’ (𝑒(πΏβ€˜π‘Œ)𝑓) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((π‘”β€˜π‘—)(πΏβ€˜π‘Œ)(β„Žβ€˜π‘—))))))    &   (πœ‘ β†’ Xπ‘˜ ∈ π‘Š ((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜)) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ π‘Š (((πΆβ€˜π‘—)β€˜π‘˜)[,)((π·β€˜π‘—)β€˜π‘˜)))    &   π‘‚ = (π‘₯ ∈ Xπ‘˜ ∈ π‘Œ ((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜)) ↦ (π‘˜ ∈ π‘Š ↦ if(π‘˜ ∈ π‘Œ, (π‘₯β€˜π‘˜), 𝑆)))    β‡’   (πœ‘ β†’ βˆƒπ‘’ ∈ π‘ˆ 𝑆 < 𝑒)
 
Theoremhoidmvlelem4 45300* The dimensional volume of a multidimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. Induction step of Lemma 115B of [Fremlin1] p. 29, case nonempty interval and dimension of the space greater than 1. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ π‘Œ βŠ† 𝑋)    &   (πœ‘ β†’ π‘Œ β‰  βˆ…)    &   (πœ‘ β†’ 𝑍 ∈ (𝑋 βˆ– π‘Œ))    &   π‘Š = (π‘Œ βˆͺ {𝑍})    &   (πœ‘ β†’ 𝐴:π‘ŠβŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘ŠβŸΆβ„)    &   ((πœ‘ ∧ π‘˜ ∈ π‘Š) β†’ (π΄β€˜π‘˜) < (π΅β€˜π‘˜))    &   (πœ‘ β†’ 𝐢:β„•βŸΆ(ℝ ↑m π‘Š))    &   (πœ‘ β†’ 𝐷:β„•βŸΆ(ℝ ↑m π‘Š))    &   (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)(π·β€˜π‘—)))) ∈ ℝ)    &   π» = (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m π‘Š) ↦ (𝑗 ∈ π‘Š ↦ if(𝑗 ∈ π‘Œ, (π‘β€˜π‘—), if((π‘β€˜π‘—) ≀ π‘₯, (π‘β€˜π‘—), π‘₯)))))    &   πΊ = ((𝐴 β†Ύ π‘Œ)(πΏβ€˜π‘Œ)(𝐡 β†Ύ π‘Œ))    &   (πœ‘ β†’ 𝐸 ∈ ℝ+)    &   π‘ˆ = {𝑧 ∈ ((π΄β€˜π‘)[,](π΅β€˜π‘)) ∣ (𝐺 Β· (𝑧 βˆ’ (π΄β€˜π‘))) ≀ ((1 + 𝐸) Β· (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘§)β€˜(π·β€˜π‘—))))))}    &   π‘† = sup(π‘ˆ, ℝ, < )    &   (πœ‘ β†’ βˆ€π‘’ ∈ (ℝ ↑m π‘Œ)βˆ€π‘“ ∈ (ℝ ↑m π‘Œ)βˆ€π‘” ∈ ((ℝ ↑m π‘Œ) ↑m β„•)βˆ€β„Ž ∈ ((ℝ ↑m π‘Œ) ↑m β„•)(Xπ‘˜ ∈ π‘Œ ((π‘’β€˜π‘˜)[,)(π‘“β€˜π‘˜)) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ π‘Œ (((π‘”β€˜π‘—)β€˜π‘˜)[,)((β„Žβ€˜π‘—)β€˜π‘˜)) β†’ (𝑒(πΏβ€˜π‘Œ)𝑓) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((π‘”β€˜π‘—)(πΏβ€˜π‘Œ)(β„Žβ€˜π‘—))))))    &   (πœ‘ β†’ Xπ‘˜ ∈ π‘Š ((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜)) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ π‘Š (((πΆβ€˜π‘—)β€˜π‘˜)[,)((π·β€˜π‘—)β€˜π‘˜)))    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜π‘Š)𝐡) ≀ ((1 + 𝐸) Β· (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)(π·β€˜π‘—))))))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47805
  Copyright terms: Public domain < Previous  Next >