HomeHome Metamath Proof Explorer
Theorem List (p. 453 of 457)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28785)
  Hilbert Space Explorer  Hilbert Space Explorer
(28786-30308)
  Users' Mathboxes  Users' Mathboxes
(30309-45683)
 

Theorem List for Metamath Proof Explorer - 45201-45300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-lininds 45201* Define the relation between a module and its linearly independent subsets. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 24-Apr-2019.) (Revised by AV, 30-Jul-2019.)
linIndS = {⟨𝑠, 𝑚⟩ ∣ (𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g𝑚)) → ∀𝑥𝑠 (𝑓𝑥) = (0g‘(Scalar‘𝑚))))}
 
Theoremrellininds 45202 The class defining the relation between a module and its linearly independent subsets is a relation. (Contributed by AV, 13-Apr-2019.)
Rel linIndS
 
Definitiondf-lindeps 45203* Define the relation between a module and its linearly dependent subsets. (Contributed by AV, 26-Apr-2019.)
linDepS = {⟨𝑠, 𝑚⟩ ∣ ¬ 𝑠 linIndS 𝑚}
 
Theoremlinindsv 45204 The classes of the module and its linearly independent subsets are sets. (Contributed by AV, 13-Apr-2019.)
(𝑆 linIndS 𝑀 → (𝑆 ∈ V ∧ 𝑀 ∈ V))
 
Theoremislininds 45205* The property of being a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 30-Jul-2019.)
𝐵 = (Base‘𝑀)    &   𝑍 = (0g𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)    &    0 = (0g𝑅)       ((𝑆𝑉𝑀𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
 
Theoremlinindsi 45206* The implications of being a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 30-Jul-2019.)
𝐵 = (Base‘𝑀)    &   𝑍 = (0g𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)    &    0 = (0g𝑅)       (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
 
Theoremlinindslinci 45207* The implications of being a linearly independent subset and a linear combination of this subset being 0. (Contributed by AV, 24-Apr-2019.) (Revised by AV, 30-Jul-2019.)
𝐵 = (Base‘𝑀)    &   𝑍 = (0g𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)    &    0 = (0g𝑅)       ((𝑆 linIndS 𝑀 ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍)) → ∀𝑥𝑆 (𝐹𝑥) = 0 )
 
Theoremislinindfis 45208* The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019.)
𝐵 = (Base‘𝑀)    &   𝑍 = (0g𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)    &    0 = (0g𝑅)       ((𝑆 ∈ Fin ∧ 𝑀𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
 
Theoremislinindfiss 45209* The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019.)
𝐵 = (Base‘𝑀)    &   𝑍 = (0g𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)    &    0 = (0g𝑅)       ((𝑀𝑊𝑆 ∈ Fin ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
 
Theoremlinindscl 45210 A linearly independent set is a subset of (the base set of) a module. (Contributed by AV, 13-Apr-2019.)
(𝑆 linIndS 𝑀𝑆 ∈ 𝒫 (Base‘𝑀))
 
Theoremlindepsnlininds 45211 A linearly dependent subset is not a linearly independent subset. (Contributed by AV, 26-Apr-2019.)
((𝑆𝑉𝑀𝑊) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀))
 
Theoremislindeps 45212* The property of being a linearly dependent subset. (Contributed by AV, 26-Apr-2019.) (Revised by AV, 30-Jul-2019.)
𝐵 = (Base‘𝑀)    &   𝑍 = (0g𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)    &    0 = (0g𝑅)       ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈ (𝐸m 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 )))
 
Theoremlincext1 45213* Property 1 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 29-Apr-2019.)
𝐵 = (Base‘𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)    &   𝑁 = (invg𝑅)    &   𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))       (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸m 𝑆))
 
Theoremlincext2 45214* Property 2 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 30-Jul-2019.)
𝐵 = (Base‘𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)    &   𝑁 = (invg𝑅)    &   𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))       (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 )
 
Theoremlincext3 45215* Property 3 of an extension of a linear combination. (Contributed by AV, 23-Apr-2019.) (Revised by AV, 30-Jul-2019.)
𝐵 = (Base‘𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)    &   𝑁 = (invg𝑅)    &   𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))       (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → (𝐹( linC ‘𝑀)𝑆) = 𝑍)
 
Theoremlindslinindsimp1 45216* Implication 1 for lindslininds 45223. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) (Proof shortened by II, 16-Feb-2023.)
𝑅 = (Scalar‘𝑀)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)       ((𝑆𝑉𝑀 ∈ LMod) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))))
 
Theoremlindslinindimp2lem1 45217* Lemma 1 for lindslinindsimp2 45222. (Contributed by AV, 25-Apr-2019.)
𝑅 = (Scalar‘𝑀)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)    &   𝑌 = ((invg𝑅)‘(𝑓𝑥))    &   𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))       (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → 𝑌𝐵)
 
Theoremlindslinindimp2lem2 45218* Lemma 2 for lindslinindsimp2 45222. (Contributed by AV, 25-Apr-2019.)
𝑅 = (Scalar‘𝑀)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)    &   𝑌 = ((invg𝑅)‘(𝑓𝑥))    &   𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))       (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵m 𝑆))) → 𝐺 ∈ (𝐵m (𝑆 ∖ {𝑥})))
 
Theoremlindslinindimp2lem3 45219* Lemma 3 for lindslinindsimp2 45222. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.)
𝑅 = (Scalar‘𝑀)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)    &   𝑌 = ((invg𝑅)‘(𝑓𝑥))    &   𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))       (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 )) → 𝐺 finSupp 0 )
 
Theoremlindslinindimp2lem4 45220* Lemma 4 for lindslinindsimp2 45222. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) (Proof shortened by II, 16-Feb-2023.)
𝑅 = (Scalar‘𝑀)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)    &   𝑌 = ((invg𝑅)‘(𝑓𝑥))    &   𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))       (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) ∧ (𝑓 ∈ (𝐵m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥))
 
Theoremlindslinindsimp2lem5 45221* Lemma 5 for lindslinindsimp2 45222. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.)
𝑅 = (Scalar‘𝑀)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)       (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 )))
 
Theoremlindslinindsimp2 45222* Implication 2 for lindslininds 45223. (Contributed by AV, 26-Apr-2019.) (Revised by AV, 30-Jul-2019.)
𝑅 = (Scalar‘𝑀)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)       ((𝑆𝑉𝑀 ∈ LMod) → ((𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
 
Theoremlindslininds 45223 Equivalence of definitions df-linds 20557 and df-lininds 45201 for (linear) independence for (left) modules. (Contributed by AV, 26-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
((𝑆𝑉𝑀 ∈ LMod) → (𝑆 linIndS 𝑀𝑆 ∈ (LIndS‘𝑀)))
 
Theoremlinds0 45224 The empty set is always a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
(𝑀𝑉 → ∅ linIndS 𝑀)
 
Theoremel0ldep 45225 A set containing the zero element of a module is always linearly dependent, if the underlying ring has at least two elements. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
(((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → 𝑆 linDepS 𝑀)
 
Theoremel0ldepsnzr 45226 A set containing the zero element of a module over a nonzero ring is always linearly dependent. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.)
(((𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ NzRing) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → 𝑆 linDepS 𝑀)
 
Theoremlindsrng01 45227 Any subset of a module is always linearly independent if the underlying ring has at most one element. Since the underlying ring cannot be the empty set (see lmodsn0 19700), this means that the underlying ring has only one element, so it is a zero ring. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.)
𝐵 = (Base‘𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)       ((𝑀 ∈ LMod ∧ ((♯‘𝐸) = 0 ∨ (♯‘𝐸) = 1) ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀)
 
Theoremlindszr 45228 Any subset of a module over a zero ring is always linearly independent. (Contributed by AV, 27-Apr-2019.)
((𝑀 ∈ LMod ∧ ¬ (Scalar‘𝑀) ∈ NzRing ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → 𝑆 linIndS 𝑀)
 
Theoremsnlindsntorlem 45229* Lemma for snlindsntor 45230. (Contributed by AV, 15-Apr-2019.)
𝐵 = (Base‘𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝑆 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)    &    · = ( ·𝑠𝑀)       ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) → ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
 
Theoremsnlindsntor 45230* A singleton is linearly independent iff it does not contain a torsion element. According to Wikipedia ("Torsion (algebra)", 15-Apr-2019, https://en.wikipedia.org/wiki/Torsion_(algebra)): "An element m of a module M over a ring R is called a torsion element of the module if there exists a regular element r of the ring (an element that is neither a left nor a right zero divisor) that annihilates m, i.e., (𝑟 · 𝑚) = 0. In an integral domain (a commutative ring without zero divisors), every nonzero element is regular, so a torsion element of a module over an integral domain is one annihilated by a nonzero element of the integral domain." Analogously, the definition in [Lang] p. 147 states that "An element x of [a module] E [over a ring R] is called a torsion element if there exists 𝑎𝑅, 𝑎 ≠ 0, such that 𝑎 · 𝑥 = 0. This definition includes the zero element of the module. Some authors, however, exclude the zero element from the definition of torsion elements. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.)
𝐵 = (Base‘𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝑆 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)    &    · = ( ·𝑠𝑀)       ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ {𝑋} linIndS 𝑀))
 
Theoremldepsprlem 45231 Lemma for ldepspr 45232. (Contributed by AV, 16-Apr-2019.)
𝐵 = (Base‘𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝑆 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)    &    · = ( ·𝑠𝑀)    &    1 = (1r𝑅)    &   𝑁 = (invg𝑅)       ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (𝑋 = (𝐴 · 𝑌) → (( 1 · 𝑋)(+g𝑀)((𝑁𝐴) · 𝑌)) = 𝑍))
 
Theoremldepspr 45232 If a vector is a scalar multiple of another vector, the (unordered pair containing the) two vectors are linearly dependent. (Contributed by AV, 16-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
𝐵 = (Base‘𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝑆 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)    &    · = ( ·𝑠𝑀)       ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → ((𝐴𝑆𝑋 = (𝐴 · 𝑌)) → {𝑋, 𝑌} linDepS 𝑀))
 
Theoremlincresunit3lem3 45233 Lemma 3 for lincresunit3 45240. (Contributed by AV, 18-May-2019.)
𝐵 = (Base‘𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &   𝑁 = (invg𝑅)    &    · = ( ·𝑠𝑀)       (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌) ↔ 𝑋 = 𝑌))
 
Theoremlincresunitlem1 45234 Lemma 1 for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.)
𝐵 = (Base‘𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)    &   𝑁 = (invg𝑅)    &   𝐼 = (invr𝑅)    &    · = (.r𝑅)    &   𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))       (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸)
 
Theoremlincresunitlem2 45235 Lemma for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.)
𝐵 = (Base‘𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)    &   𝑁 = (invg𝑅)    &   𝐼 = (invr𝑅)    &    · = (.r𝑅)    &   𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))       ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑌𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑌)) ∈ 𝐸)
 
Theoremlincresunit1 45236* Property 1 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.)
𝐵 = (Base‘𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)    &   𝑁 = (invg𝑅)    &   𝐼 = (invr𝑅)    &    · = (.r𝑅)    &   𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))       (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))
 
Theoremlincresunit2 45237* Property 2 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.)
𝐵 = (Base‘𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)    &   𝑁 = (invg𝑅)    &   𝐼 = (invr𝑅)    &    · = (.r𝑅)    &   𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))       (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → 𝐺 finSupp 0 )
 
Theoremlincresunit3lem1 45238* Lemma 1 for lincresunit3 45240. (Contributed by AV, 17-May-2019.)
𝐵 = (Base‘𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)    &   𝑁 = (invg𝑅)    &   𝐼 = (invr𝑅)    &    · = (.r𝑅)    &   𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))       (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
 
Theoremlincresunit3lem2 45239* Lemma 2 for lincresunit3 45240. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.)
𝐵 = (Base‘𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)    &   𝑁 = (invg𝑅)    &   𝐼 = (invr𝑅)    &    · = (.r𝑅)    &   𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))       (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 )) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺𝑧)( ·𝑠𝑀)𝑧)))) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋})))
 
Theoremlincresunit3 45240* Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.)
𝐵 = (Base‘𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)    &   𝑁 = (invg𝑅)    &   𝐼 = (invr𝑅)    &    · = (.r𝑅)    &   𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))       (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋)
 
Theoremlincreslvec3 45241* Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.)
𝐵 = (Base‘𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    0 = (0g𝑅)    &   𝑍 = (0g𝑀)    &   𝑁 = (invg𝑅)    &   𝐼 = (invr𝑅)    &    · = (.r𝑅)    &   𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))       (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋)
 
Theoremislindeps2 45242* Conditions for being a linearly dependent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
𝐵 = (Base‘𝑀)    &   𝑍 = (0g𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)    &    0 = (0g𝑅)       ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
 
Theoremislininds2 45243* Implication of being a linearly independent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
𝐵 = (Base‘𝑀)    &   𝑍 = (0g𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)    &    0 = (0g𝑅)       ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑆 linIndS 𝑀 → ∀𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)))
 
Theoremisldepslvec2 45244* Alternative definition of being a linearly dependent subset of a (left) vector space. In this case, the reverse implication of islindeps2 45242 holds, so that both definitions are equivalent (see theorem 1.6 in [Roman] p. 46 and the note in [Roman] p. 112: if a nontrivial linear combination of elements (where not all of the coefficients are 0) in an R-vector space is 0, then and only then each of the elements is a linear combination of the others. (Contributed by AV, 30-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
𝐵 = (Base‘𝑀)    &   𝑍 = (0g𝑀)    &   𝑅 = (Scalar‘𝑀)    &   𝐸 = (Base‘𝑅)    &    0 = (0g𝑅)       ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ 𝑆 linDepS 𝑀))
 
Theoremlindssnlvec 45245 A singleton not containing the zero element of a vector space is always linearly independent. (Contributed by AV, 16-Apr-2019.) (Revised by AV, 28-Apr-2019.)
((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g𝑀)) → {𝑆} linIndS 𝑀)
 
20.41.21.4  Simple left modules and the ` ZZ `-module
 
Theoremlmod1lem1 45246* Lemma 1 for lmod1 45251. (Contributed by AV, 28-Apr-2019.)
𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})       ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼})
 
Theoremlmod1lem2 45247* Lemma 2 for lmod1 45251. (Contributed by AV, 28-Apr-2019.)
𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})       ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
 
Theoremlmod1lem3 45248* Lemma 3 for lmod1 45251. (Contributed by AV, 29-Apr-2019.)
𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})       (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
 
Theoremlmod1lem4 45249* Lemma 4 for lmod1 45251. (Contributed by AV, 29-Apr-2019.)
𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})       (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)))
 
Theoremlmod1lem5 45250* Lemma 5 for lmod1 45251. (Contributed by AV, 28-Apr-2019.)
𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})       ((𝐼𝑉𝑅 ∈ Ring) → ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼)
 
Theoremlmod1 45251* The (smallest) structure representing a zero module over an arbitrary ring. (Contributed by AV, 29-Apr-2019.)
𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})       ((𝐼𝑉𝑅 ∈ Ring) → 𝑀 ∈ LMod)
 
Theoremlmod1zr 45252 The (smallest) structure representing a zero module over a zero ring. (Contributed by AV, 29-Apr-2019.)
𝑅 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}    &   𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩})       ((𝐼𝑉𝑍𝑊) → 𝑀 ∈ LMod)
 
Theoremlmod1zrnlvec 45253 There is a (left) module (a zero module) which is not a (left) vector space. (Contributed by AV, 29-Apr-2019.)
𝑅 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}    &   𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩})       ((𝐼𝑉𝑍𝑊) → 𝑀 ∉ LVec)
 
Theoremlmodn0 45254 Left modules exist. (Contributed by AV, 29-Apr-2019.)
LMod ≠ ∅
 
Theoremzlmodzxzequa 45255 Example of an equation within the -module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set). (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.)
𝑍 = (ℤring freeLMod {0, 1})    &    0 = {⟨0, 0⟩, ⟨1, 0⟩}    &    = ( ·𝑠𝑍)    &    = (-g𝑍)    &   𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}    &   𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}       ((2 𝐴) (3 𝐵)) = 0
 
Theoremzlmodzxznm 45256 Example of a linearly dependent set whose elements are not linear combinations of the others, see note in [Roman] p. 112). (Contributed by AV, 23-May-2019.) (Revised by AV, 10-Jun-2019.)
𝑍 = (ℤring freeLMod {0, 1})    &    0 = {⟨0, 0⟩, ⟨1, 0⟩}    &    = ( ·𝑠𝑍)    &    = (-g𝑍)    &   𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}    &   𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}       𝑖 ∈ ℤ ((𝑖 𝐴) ≠ 𝐵 ∧ (𝑖 𝐵) ≠ 𝐴)
 
Theoremzlmodzxzldeplem 45257 A and B are not equal. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
𝑍 = (ℤring freeLMod {0, 1})    &   𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}    &   𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}       𝐴𝐵
 
Theoremzlmodzxzequap 45258 Example of an equation within the -module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set), written as a sum. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
𝑍 = (ℤring freeLMod {0, 1})    &   𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}    &   𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}    &    0 = {⟨0, 0⟩, ⟨1, 0⟩}    &    + = (+g𝑍)    &    = ( ·𝑠𝑍)       ((2 𝐴) + (-3 𝐵)) = 0
 
Theoremzlmodzxzldeplem1 45259 Lemma 1 for zlmodzxzldep 45263. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
𝑍 = (ℤring freeLMod {0, 1})    &   𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}    &   𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}    &   𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}       𝐹 ∈ (ℤ ↑m {𝐴, 𝐵})
 
Theoremzlmodzxzldeplem2 45260 Lemma 2 for zlmodzxzldep 45263. (Contributed by AV, 24-May-2019.) (Revised by AV, 30-Jul-2019.)
𝑍 = (ℤring freeLMod {0, 1})    &   𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}    &   𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}    &   𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}       𝐹 finSupp 0
 
Theoremzlmodzxzldeplem3 45261 Lemma 3 for zlmodzxzldep 45263. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
𝑍 = (ℤring freeLMod {0, 1})    &   𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}    &   𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}    &   𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}       (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍)
 
Theoremzlmodzxzldeplem4 45262* Lemma 4 for zlmodzxzldep 45263. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
𝑍 = (ℤring freeLMod {0, 1})    &   𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}    &   𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}    &   𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}       𝑦 ∈ {𝐴, 𝐵} (𝐹𝑦) ≠ 0
 
Theoremzlmodzxzldep 45263 { A , B } is a linearly dependent set within the -module ℤ × ℤ (see example in [Roman] p. 112). (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.)
𝑍 = (ℤring freeLMod {0, 1})    &   𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}    &   𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}       {𝐴, 𝐵} linDepS 𝑍
 
Theoremldepsnlinclem1 45264 Lemma 1 for ldepsnlinc 45267. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.)
𝑍 = (ℤring freeLMod {0, 1})    &   𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}    &   𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}       (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴)
 
Theoremldepsnlinclem2 45265 Lemma 2 for ldepsnlinc 45267. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.)
𝑍 = (ℤring freeLMod {0, 1})    &   𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}    &   𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}       (𝐹 ∈ ((Base‘ℤring) ↑m {𝐴}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵)
 
20.41.21.5  Differences between (left) modules and (left) vector spaces
 
Theoremlvecpsslmod 45266 The class of all (left) vector spaces is a proper subclass of the class of all (left) modules. Although it is obvious (and proven by lveclmod 19931) that every left vector space is a left module, there is (at least) one left module which is no left vector space, for example the zero module over the zero ring, see lmod1zrnlvec 45253. (Contributed by AV, 29-Apr-2019.)
LVec ⊊ LMod
 
Theoremldepsnlinc 45267* The reverse implication of islindeps2 45242 does not hold for arbitrary (left) modules, see note in [Roman] p. 112: "... if a nontrivial linear combination of the elements ... in an R-module M is 0, ... where not all of the coefficients are 0, then we cannot conclude ... that one of the elements ... is a linear combination of the others." This means that there is at least one left module having a linearly dependent subset in which there is at least one element which is not a linear combinantion of the other elements of this subset. Such a left module can be constructed by using zlmodzxzequa 45255 and zlmodzxznm 45256. (Contributed by AV, 25-May-2019.) (Revised by AV, 30-Jul-2019.)
𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣))
 
Theoremldepslinc 45268* For (left) vector spaces, isldepslvec2 45244 provides an alternative definition of being a linearly dependent subset, whereas ldepsnlinc 45267 indicates that there is not an analogous alternative definition for arbitrary (left) modules. (Contributed by AV, 25-May-2019.) (Revised by AV, 30-Jul-2019.)
(∀𝑚 ∈ LVec ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∧ ¬ ∀𝑚 ∈ LMod ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
 
20.41.22  Complexity theory
 
20.41.22.1  Auxiliary theorems
 
Theoremsuppdm 45269 If the range of a function does not contain the zero, the support of the function equals its domain. (Contributed by AV, 20-May-2020.)
(((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = dom 𝐹)
 
Theoremeluz2cnn0n1 45270 An integer greater than 1 is a complex number not equal to 0 or 1. (Contributed by AV, 23-May-2020.)
(𝐵 ∈ (ℤ‘2) → 𝐵 ∈ (ℂ ∖ {0, 1}))
 
Theoremdivge1b 45271 The ratio of a real number to a positive real number is greater than or equal to 1 iff the divisor (the positive real number) is less than or equal to the dividend (the real number). (Contributed by AV, 26-May-2020.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ) → (𝐴𝐵 ↔ 1 ≤ (𝐵 / 𝐴)))
 
Theoremdivgt1b 45272 The ratio of a real number to a positive real number is greater than 1 iff the divisor (the positive real number) is less than the dividend (the real number). (Contributed by AV, 30-May-2020.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 1 < (𝐵 / 𝐴)))
 
Theoremltsubaddb 45273 Equivalence for the "less than" relation between differences and sums. (Contributed by AV, 6-Jun-2020.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶) < (𝐵𝐷) ↔ (𝐴 + 𝐷) < (𝐵 + 𝐶)))
 
Theoremltsubsubb 45274 Equivalence for the "less than" relation between differences. (Contributed by AV, 6-Jun-2020.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶) < (𝐵𝐷) ↔ (𝐴𝐵) < (𝐶𝐷)))
 
Theoremltsubadd2b 45275 Equivalence for the "less than" relation between differences and sums. (Contributed by AV, 6-Jun-2020.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐷𝐶) < (𝐵𝐴) ↔ (𝐴 + 𝐷) < (𝐵 + 𝐶)))
 
Theoremdivsub1dir 45276 Distribution of division over subtraction by 1. (Contributed by AV, 6-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) − 1) = ((𝐴𝐵) / 𝐵))
 
Theoremexpnegico01 45277 An integer greater than 1 to the power of a negative integer is in the closed-below, open-above interval between 0 and 1. (Contributed by AV, 24-May-2020.)
((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵𝑁) ∈ (0[,)1))
 
Theoremelfzolborelfzop1 45278 An element of a half-open integer interval is either equal to the left bound of the interval or an element of a half-open integer interval with a lower bound increased by 1. (Contributed by AV, 2-Jun-2020.)
(𝐾 ∈ (𝑀..^𝑁) → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))
 
Theorempw2m1lepw2m1 45279 2 to the power of a positive integer decreased by 1 is less than or equal to 2 to the power of the integer minus 1. (Contributed by AV, 30-May-2020.)
(𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1))
 
Theoremzgtp1leeq 45280 If an integer is between another integer and its predecessor, the integer is equal to the other integer. (Contributed by AV, 7-Jun-2020.)
((𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝐴 − 1) < 𝐼𝐼𝐴) → 𝐼 = 𝐴))
 
Theoremflsubz 45281 An integer can be moved in and out of the floor of a difference. (Contributed by AV, 29-May-2020.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴𝑁)) = ((⌊‘𝐴) − 𝑁))
 
20.41.22.2  The modulo (remainder) operation (extension)
 
Theoremfldivmod 45282 Expressing the floor of a division by the modulo operator. (Contributed by AV, 6-Jun-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵))
 
Theoremmod0mul 45283* If an integer is 0 modulo a positive integer, this integer must be the product of another integer and the modulus. (Contributed by AV, 7-Jun-2020.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) = 0 → ∃𝑥 ∈ ℤ 𝐴 = (𝑥 · 𝑁)))
 
Theoremmodn0mul 45284* If an integer is not 0 modulo a positive integer, this integer must be the sum of the product of another integer and the modulus and a positive integer less than the modulus. (Contributed by AV, 7-Jun-2020.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) ≠ 0 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦)))
 
Theoremm1modmmod 45285 An integer decreased by 1 modulo a positive integer minus the integer modulo the same modulus is either -1 or the modulus minus 1. (Contributed by AV, 7-Jun-2020.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1))
 
Theoremdifmodm1lt 45286 The difference between an integer modulo a positive integer and the integer decreased by 1 modulo the same modulus is less than the modulus decreased by 1 (if the modulus is greater than 2). This theorem would not be valid for an odd 𝐴 and 𝑁 = 2, since ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) would be (1 − 0) = 1 which is not less than (𝑁 − 1) = 1. (Contributed by AV, 6-Jun-2012.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
 
20.41.22.3  Even and odd integers
 
Theoremnn0onn0ex 45287* For each odd nonnegative integer there is a nonnegative integer which, multiplied by 2 and increased by 1, results in the odd nonnegative integer. (Contributed by AV, 30-May-2020.)
((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1))
 
Theoremnn0enn0ex 45288* For each even nonnegative integer there is a nonnegative integer which, multiplied by 2, results in the even nonnegative integer. (Contributed by AV, 30-May-2020.)
((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ∃𝑚 ∈ ℕ0 𝑁 = (2 · 𝑚))
 
Theoremnnennex 45289* For each even positive integer there is a positive integer which, multiplied by 2, results in the even positive integer. (Contributed by AV, 5-Jun-2023.)
((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ) → ∃𝑚 ∈ ℕ 𝑁 = (2 · 𝑚))
 
Theoremnneop 45290 A positive integer is even or odd. (Contributed by AV, 30-May-2020.)
(𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))
 
Theoremnneom 45291 A positive integer is even or odd. (Contributed by AV, 30-May-2020.)
(𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 − 1) / 2) ∈ ℕ0))
 
Theoremnn0eo 45292 A nonnegative integer is even or odd. (Contributed by AV, 27-May-2020.)
(𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0))
 
Theoremnnpw2even 45293 2 to the power of a positive integer is even. (Contributed by AV, 2-Jun-2020.)
(𝑁 ∈ ℕ → ((2↑𝑁) / 2) ∈ ℕ)
 
Theoremzefldiv2 45294 The floor of an even integer divided by 2 is equal to the integer divided by 2. (Contributed by AV, 7-Jun-2020.)
((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (⌊‘(𝑁 / 2)) = (𝑁 / 2))
 
Theoremzofldiv2 45295 The floor of an odd integer divided by 2 is equal to the integer first decreased by 1 and then divided by 2. (Contributed by AV, 7-Jun-2020.)
((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2))
 
Theoremnn0ofldiv2 45296 The floor of an odd nonnegative integer divided by 2 is equal to the integer first decreased by 1 and then divided by 2. (Contributed by AV, 1-Jun-2020.) (Proof shortened by AV, 7-Jun-2020.)
((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2))
 
Theoremflnn0div2ge 45297 The floor of a positive integer divided by 2 is greater than or equal to the integer decreased by 1 and then divided by 2. (Contributed by AV, 1-Jun-2020.)
(𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2)))
 
Theoremflnn0ohalf 45298 The floor of the half of an odd positive integer is equal to the floor of the half of the integer decreased by 1. (Contributed by AV, 5-Jun-2012.)
((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(𝑁 / 2)) = (⌊‘((𝑁 − 1) / 2)))
 
20.41.22.4  The natural logarithm on complex numbers (extension)
 
Theoremlogcxp0 45299 Logarithm of a complex power. Generalization of logcxp 25344. (Contributed by AV, 22-May-2020.)
((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℂ ∧ (𝐵 · (log‘𝐴)) ∈ ran log) → (log‘(𝐴𝑐𝐵)) = (𝐵 · (log‘𝐴)))
 
Theoremregt1loggt0 45300 The natural logarithm for a real number greater than 1 is greater than 0. (Contributed by AV, 25-May-2020.)
(𝐵 ∈ (1(,)+∞) → 0 < (log‘𝐵))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45683
  Copyright terms: Public domain < Previous  Next >