![]() |
Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ralabso | Structured version Visualization version GIF version |
Description: Simplification of restricted quantification in a transitive class. When 𝜑 is quantifier-free, this shows that the formula ∀𝑥 ∈ 𝑦𝜑 is absolute for transitive models, which is a particular case of Lemma I.16.2 of [Kunen2] p. 95. (Contributed by Eric Schmidt, 19-Oct-2025.) |
Ref | Expression |
---|---|
ralabso | ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trss 5268 | . . 3 ⊢ (Tr 𝑀 → (𝐴 ∈ 𝑀 → 𝐴 ⊆ 𝑀)) | |
2 | 1 | imp 406 | . 2 ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → 𝐴 ⊆ 𝑀) |
3 | ralss 4057 | . 2 ⊢ (𝐴 ⊆ 𝑀 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜑))) | |
4 | 2, 3 | syl 17 | 1 ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3060 ⊆ wss 3950 Tr wtr 5257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-v 3481 df-ss 3967 df-uni 4906 df-tr 5258 |
This theorem is referenced by: ralabsod 44960 ssabso 44964 disjabso 44965 modelac8prim 44982 |
Copyright terms: Public domain | W3C validator |