| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ralabso | Structured version Visualization version GIF version | ||
| Description: Simplification of restricted quantification in a transitive class. When 𝜑 is quantifier-free, this shows that the formula ∀𝑥 ∈ 𝑦𝜑 is absolute for transitive models, which is a particular case of Lemma I.16.2 of [Kunen2] p. 95. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| ralabso | ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trss 5250 | . . 3 ⊢ (Tr 𝑀 → (𝐴 ∈ 𝑀 → 𝐴 ⊆ 𝑀)) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → 𝐴 ⊆ 𝑀) |
| 3 | ralss 4038 | . 2 ⊢ (𝐴 ⊆ 𝑀 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜑))) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3931 Tr wtr 5239 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-v 3465 df-ss 3948 df-uni 4888 df-tr 5240 |
| This theorem is referenced by: ralabsod 44959 ssabso 44963 disjabso 44964 modelac8prim 44981 |
| Copyright terms: Public domain | W3C validator |