Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ralabso Structured version   Visualization version   GIF version

Theorem ralabso 44951
Description: Simplification of restricted quantification in a transitive class. When 𝜑 is quantifier-free, this shows that the formula 𝑥𝑦𝜑 is absolute for transitive models, which is a particular case of Lemma I.16.2 of [Kunen2] p. 95. (Contributed by Eric Schmidt, 19-Oct-2025.)
Assertion
Ref Expression
ralabso ((Tr 𝑀𝐴𝑀) → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝑀 (𝑥𝐴𝜑)))
Distinct variable groups:   𝑥,𝑀   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ralabso
StepHypRef Expression
1 trss 5227 . . 3 (Tr 𝑀 → (𝐴𝑀𝐴𝑀))
21imp 406 . 2 ((Tr 𝑀𝐴𝑀) → 𝐴𝑀)
3 ralss 4023 . 2 (𝐴𝑀 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝑀 (𝑥𝐴𝜑)))
42, 3syl 17 1 ((Tr 𝑀𝐴𝑀) → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝑀 (𝑥𝐴𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3045  wss 3916  Tr wtr 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-v 3452  df-ss 3933  df-uni 4874  df-tr 5217
This theorem is referenced by:  ralabsod  44953  ssabso  44957  disjabso  44958  modelac8prim  44975
  Copyright terms: Public domain W3C validator