![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ralbinrald | Structured version Visualization version GIF version |
Description: Elemination of a restricted universal quantification under certain conditions. (Contributed by Alexander van der Vekens, 2-Aug-2017.) |
Ref | Expression |
---|---|
ralbinrald.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
ralbinrald.2 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 = 𝑋) |
ralbinrald.3 | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
ralbinrald | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbinrald.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
2 | ralbinrald.3 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜃)) | |
3 | 2 | adantl 475 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝜓 ↔ 𝜃)) |
4 | 1, 3 | rspcdv 3514 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → 𝜃)) |
5 | ralbinrald.2 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → 𝑥 = 𝑋) | |
6 | 2 | bicomd 215 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝜃 ↔ 𝜓)) |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝜃 ↔ 𝜓)) |
8 | 7 | adantl 475 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜃 ↔ 𝜓)) |
9 | 8 | biimpd 221 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜃 → 𝜓)) |
10 | 9 | ralrimdva 3151 | . 2 ⊢ (𝜑 → (𝜃 → ∀𝑥 ∈ 𝐴 𝜓)) |
11 | 4, 10 | impbid 204 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∀wral 3090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-v 3400 |
This theorem is referenced by: dfdfat2 42183 |
Copyright terms: Public domain | W3C validator |