|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ralbinrald | Structured version Visualization version GIF version | ||
| Description: Elemination of a restricted universal quantification under certain conditions. (Contributed by Alexander van der Vekens, 2-Aug-2017.) | 
| Ref | Expression | 
|---|---|
| ralbinrald.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) | 
| ralbinrald.2 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 = 𝑋) | 
| ralbinrald.3 | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜃)) | 
| Ref | Expression | 
|---|---|
| ralbinrald | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralbinrald.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 2 | ralbinrald.3 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜃)) | |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝜓 ↔ 𝜃)) | 
| 4 | 1, 3 | rspcdv 3614 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → 𝜃)) | 
| 5 | ralbinrald.2 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → 𝑥 = 𝑋) | |
| 6 | 2 | bicomd 223 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝜃 ↔ 𝜓)) | 
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝜃 ↔ 𝜓)) | 
| 8 | 7 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜃 ↔ 𝜓)) | 
| 9 | 8 | biimpd 229 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜃 → 𝜓)) | 
| 10 | 9 | ralrimdva 3154 | . 2 ⊢ (𝜑 → (𝜃 → ∀𝑥 ∈ 𝐴 𝜓)) | 
| 11 | 4, 10 | impbid 212 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ 𝜃)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 | 
| This theorem is referenced by: dfdfat2 47140 | 
| Copyright terms: Public domain | W3C validator |