Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ralbinrald Structured version   Visualization version   GIF version

Theorem ralbinrald 44501
Description: Elemination of a restricted universal quantification under certain conditions. (Contributed by Alexander van der Vekens, 2-Aug-2017.)
Hypotheses
Ref Expression
ralbinrald.1 (𝜑𝑋𝐴)
ralbinrald.2 (𝑥𝐴𝑥 = 𝑋)
ralbinrald.3 (𝑥 = 𝑋 → (𝜓𝜃))
Assertion
Ref Expression
ralbinrald (𝜑 → (∀𝑥𝐴 𝜓𝜃))
Distinct variable groups:   𝑥,𝑋   𝑥,𝐴   𝜑,𝑥   𝜃,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem ralbinrald
StepHypRef Expression
1 ralbinrald.1 . . 3 (𝜑𝑋𝐴)
2 ralbinrald.3 . . . 4 (𝑥 = 𝑋 → (𝜓𝜃))
32adantl 481 . . 3 ((𝜑𝑥 = 𝑋) → (𝜓𝜃))
41, 3rspcdv 3543 . 2 (𝜑 → (∀𝑥𝐴 𝜓𝜃))
5 ralbinrald.2 . . . . . 6 (𝑥𝐴𝑥 = 𝑋)
62bicomd 222 . . . . . 6 (𝑥 = 𝑋 → (𝜃𝜓))
75, 6syl 17 . . . . 5 (𝑥𝐴 → (𝜃𝜓))
87adantl 481 . . . 4 ((𝜑𝑥𝐴) → (𝜃𝜓))
98biimpd 228 . . 3 ((𝜑𝑥𝐴) → (𝜃𝜓))
109ralrimdva 3112 . 2 (𝜑 → (𝜃 → ∀𝑥𝐴 𝜓))
114, 10impbid 211 1 (𝜑 → (∀𝑥𝐴 𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068
This theorem is referenced by:  dfdfat2  44507
  Copyright terms: Public domain W3C validator