Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdfat2 | Structured version Visualization version GIF version |
Description: Alternate definition of the predicate "defined at" not using the Fun predicate. (Contributed by Alexander van der Vekens, 22-Jul-2017.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
Ref | Expression |
---|---|
dfdfat2 | ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dfat 44611 | . 2 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
2 | relres 5920 | . . . 4 ⊢ Rel (𝐹 ↾ {𝐴}) | |
3 | dffun8 6462 | . . . 4 ⊢ (Fun (𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)) | |
4 | 2, 3 | mpbiran 706 | . . 3 ⊢ (Fun (𝐹 ↾ {𝐴}) ↔ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
5 | 4 | anbi2i 623 | . 2 ⊢ ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (𝐴 ∈ dom 𝐹 ∧ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)) |
6 | brres 5898 | . . . . . . . 8 ⊢ (𝑦 ∈ V → (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦))) | |
7 | 6 | elv 3438 | . . . . . . 7 ⊢ (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦)) |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝐹 → (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦))) |
9 | 8 | eubidv 2586 | . . . . 5 ⊢ (𝐴 ∈ dom 𝐹 → (∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦 ↔ ∃!𝑦(𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦))) |
10 | 9 | ralbidv 3112 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 → (∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦 ↔ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦(𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦))) |
11 | eldmressnsn 5934 | . . . . 5 ⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom (𝐹 ↾ {𝐴})) | |
12 | eldmressn 44531 | . . . . 5 ⊢ (𝑥 ∈ dom (𝐹 ↾ {𝐴}) → 𝑥 = 𝐴) | |
13 | velsn 4577 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
14 | 13 | biimpri 227 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → 𝑥 ∈ {𝐴}) |
15 | breq1 5077 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) | |
16 | 15 | anbi2d 629 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) ↔ (𝑥 ∈ {𝐴} ∧ 𝐴𝐹𝑦))) |
17 | 14, 16 | mpbirand 704 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) ↔ 𝐴𝐹𝑦)) |
18 | 17 | eubidv 2586 | . . . . 5 ⊢ (𝑥 = 𝐴 → (∃!𝑦(𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) ↔ ∃!𝑦 𝐴𝐹𝑦)) |
19 | 11, 12, 18 | ralbinrald 44614 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 → (∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦(𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) ↔ ∃!𝑦 𝐴𝐹𝑦)) |
20 | 10, 19 | bitrd 278 | . . 3 ⊢ (𝐴 ∈ dom 𝐹 → (∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦 ↔ ∃!𝑦 𝐴𝐹𝑦)) |
21 | 20 | pm5.32i 575 | . 2 ⊢ ((𝐴 ∈ dom 𝐹 ∧ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦)) |
22 | 1, 5, 21 | 3bitri 297 | 1 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃!weu 2568 ∀wral 3064 Vcvv 3432 {csn 4561 class class class wbr 5074 dom cdm 5589 ↾ cres 5591 Rel wrel 5594 Fun wfun 6427 defAt wdfat 44608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-res 5601 df-fun 6435 df-dfat 44611 |
This theorem is referenced by: dfafv2 44624 afveu 44645 rlimdmafv 44669 tz6.12-2-afv2 44729 afv2eu 44730 tz6.12i-afv2 44735 dfatbrafv2b 44737 dfatsnafv2 44744 dfafv23 44745 dfatcolem 44747 dfatco 44748 rlimdmafv2 44750 |
Copyright terms: Public domain | W3C validator |