![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdfat2 | Structured version Visualization version GIF version |
Description: Alternate definition of the predicate "defined at" not using the Fun predicate. (Contributed by Alexander van der Vekens, 22-Jul-2017.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
Ref | Expression |
---|---|
dfdfat2 | ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dfat 46732 | . 2 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
2 | relres 6015 | . . . 4 ⊢ Rel (𝐹 ↾ {𝐴}) | |
3 | dffun8 6587 | . . . 4 ⊢ (Fun (𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)) | |
4 | 2, 3 | mpbiran 707 | . . 3 ⊢ (Fun (𝐹 ↾ {𝐴}) ↔ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
5 | 4 | anbi2i 621 | . 2 ⊢ ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (𝐴 ∈ dom 𝐹 ∧ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)) |
6 | brres 5996 | . . . . . . . 8 ⊢ (𝑦 ∈ V → (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦))) | |
7 | 6 | elv 3468 | . . . . . . 7 ⊢ (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦)) |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝐹 → (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦))) |
9 | 8 | eubidv 2575 | . . . . 5 ⊢ (𝐴 ∈ dom 𝐹 → (∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦 ↔ ∃!𝑦(𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦))) |
10 | 9 | ralbidv 3168 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 → (∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦 ↔ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦(𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦))) |
11 | eldmressnsn 6033 | . . . . 5 ⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom (𝐹 ↾ {𝐴})) | |
12 | eldmressn 46652 | . . . . 5 ⊢ (𝑥 ∈ dom (𝐹 ↾ {𝐴}) → 𝑥 = 𝐴) | |
13 | velsn 4649 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
14 | 13 | biimpri 227 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → 𝑥 ∈ {𝐴}) |
15 | breq1 5156 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) | |
16 | 15 | anbi2d 628 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) ↔ (𝑥 ∈ {𝐴} ∧ 𝐴𝐹𝑦))) |
17 | 14, 16 | mpbirand 705 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) ↔ 𝐴𝐹𝑦)) |
18 | 17 | eubidv 2575 | . . . . 5 ⊢ (𝑥 = 𝐴 → (∃!𝑦(𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) ↔ ∃!𝑦 𝐴𝐹𝑦)) |
19 | 11, 12, 18 | ralbinrald 46735 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 → (∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦(𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) ↔ ∃!𝑦 𝐴𝐹𝑦)) |
20 | 10, 19 | bitrd 278 | . . 3 ⊢ (𝐴 ∈ dom 𝐹 → (∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦 ↔ ∃!𝑦 𝐴𝐹𝑦)) |
21 | 20 | pm5.32i 573 | . 2 ⊢ ((𝐴 ∈ dom 𝐹 ∧ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦)) |
22 | 1, 5, 21 | 3bitri 296 | 1 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∃!weu 2557 ∀wral 3051 Vcvv 3462 {csn 4633 class class class wbr 5153 dom cdm 5682 ↾ cres 5684 Rel wrel 5687 Fun wfun 6548 defAt wdfat 46729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-opab 5216 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-res 5694 df-fun 6556 df-dfat 46732 |
This theorem is referenced by: dfafv2 46745 afveu 46766 rlimdmafv 46790 tz6.12-2-afv2 46850 afv2eu 46851 tz6.12i-afv2 46856 dfatbrafv2b 46858 dfatsnafv2 46865 dfafv23 46866 dfatcolem 46868 dfatco 46869 rlimdmafv2 46871 |
Copyright terms: Public domain | W3C validator |