Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdfat2 Structured version   Visualization version   GIF version

Theorem dfdfat2 41879
Description: Alternate definition of the predicate "defined at" not using the Fun predicate. (Contributed by Alexander van der Vekens, 22-Jul-2017.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
dfdfat2 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹

Proof of Theorem dfdfat2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-dfat 41870 . 2 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
2 relres 5603 . . . 4 Rel (𝐹 ↾ {𝐴})
3 dffun8 6098 . . . 4 (Fun (𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦))
42, 3mpbiran 700 . . 3 (Fun (𝐹 ↾ {𝐴}) ↔ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)
54anbi2i 616 . 2 ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (𝐴 ∈ dom 𝐹 ∧ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦))
6 brres 5574 . . . . . . . 8 (𝑦 ∈ V → (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦)))
76elv 3354 . . . . . . 7 (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦))
87a1i 11 . . . . . 6 (𝐴 ∈ dom 𝐹 → (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦)))
98eubidv 2585 . . . . 5 (𝐴 ∈ dom 𝐹 → (∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦 ↔ ∃!𝑦(𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦)))
109ralbidv 3133 . . . 4 (𝐴 ∈ dom 𝐹 → (∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦 ↔ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦(𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦)))
11 eldmressnsn 5618 . . . . 5 (𝐴 ∈ dom 𝐹𝐴 ∈ dom (𝐹 ↾ {𝐴}))
12 eldmressn 41817 . . . . 5 (𝑥 ∈ dom (𝐹 ↾ {𝐴}) → 𝑥 = 𝐴)
13 velsn 4352 . . . . . . . 8 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
1413biimpri 219 . . . . . . 7 (𝑥 = 𝐴𝑥 ∈ {𝐴})
15 breq1 4814 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐹𝑦𝐴𝐹𝑦))
1615anbi2d 622 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) ↔ (𝑥 ∈ {𝐴} ∧ 𝐴𝐹𝑦)))
1714, 16mpbirand 698 . . . . . 6 (𝑥 = 𝐴 → ((𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) ↔ 𝐴𝐹𝑦))
1817eubidv 2585 . . . . 5 (𝑥 = 𝐴 → (∃!𝑦(𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) ↔ ∃!𝑦 𝐴𝐹𝑦))
1911, 12, 18ralbinrald 41873 . . . 4 (𝐴 ∈ dom 𝐹 → (∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦(𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) ↔ ∃!𝑦 𝐴𝐹𝑦))
2010, 19bitrd 270 . . 3 (𝐴 ∈ dom 𝐹 → (∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦 ↔ ∃!𝑦 𝐴𝐹𝑦))
2120pm5.32i 570 . 2 ((𝐴 ∈ dom 𝐹 ∧ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦))
221, 5, 213bitri 288 1 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384   = wceq 1652  wcel 2155  ∃!weu 2581  wral 3055  Vcvv 3350  {csn 4336   class class class wbr 4811  dom cdm 5279  cres 5281  Rel wrel 5284  Fun wfun 6064   defAt wdfat 41867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pr 5064
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-sn 4337  df-pr 4339  df-op 4343  df-br 4812  df-opab 4874  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-res 5291  df-fun 6072  df-dfat 41870
This theorem is referenced by:  dfafv2  41883  afveu  41904  rlimdmafv  41928  tz6.12-2-afv2  41988  afv2eu  41989  tz6.12i-afv2  41994  dfatbrafv2b  41996  dfatsnafv2  42003  dfafv23  42004  dfatcolem  42006  dfatco  42007  rlimdmafv2  42009
  Copyright terms: Public domain W3C validator