Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdfat2 Structured version   Visualization version   GIF version

Theorem dfdfat2 43623
 Description: Alternate definition of the predicate "defined at" not using the Fun predicate. (Contributed by Alexander van der Vekens, 22-Jul-2017.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
dfdfat2 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹

Proof of Theorem dfdfat2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-dfat 43614 . 2 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
2 relres 5860 . . . 4 Rel (𝐹 ↾ {𝐴})
3 dffun8 6362 . . . 4 (Fun (𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦))
42, 3mpbiran 708 . . 3 (Fun (𝐹 ↾ {𝐴}) ↔ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)
54anbi2i 625 . 2 ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (𝐴 ∈ dom 𝐹 ∧ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦))
6 brres 5838 . . . . . . . 8 (𝑦 ∈ V → (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦)))
76elv 3474 . . . . . . 7 (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦))
87a1i 11 . . . . . 6 (𝐴 ∈ dom 𝐹 → (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦)))
98eubidv 2671 . . . . 5 (𝐴 ∈ dom 𝐹 → (∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦 ↔ ∃!𝑦(𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦)))
109ralbidv 3187 . . . 4 (𝐴 ∈ dom 𝐹 → (∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦 ↔ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦(𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦)))
11 eldmressnsn 5873 . . . . 5 (𝐴 ∈ dom 𝐹𝐴 ∈ dom (𝐹 ↾ {𝐴}))
12 eldmressn 43568 . . . . 5 (𝑥 ∈ dom (𝐹 ↾ {𝐴}) → 𝑥 = 𝐴)
13 velsn 4555 . . . . . . . 8 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
1413biimpri 231 . . . . . . 7 (𝑥 = 𝐴𝑥 ∈ {𝐴})
15 breq1 5045 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐹𝑦𝐴𝐹𝑦))
1615anbi2d 631 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) ↔ (𝑥 ∈ {𝐴} ∧ 𝐴𝐹𝑦)))
1714, 16mpbirand 706 . . . . . 6 (𝑥 = 𝐴 → ((𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) ↔ 𝐴𝐹𝑦))
1817eubidv 2671 . . . . 5 (𝑥 = 𝐴 → (∃!𝑦(𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) ↔ ∃!𝑦 𝐴𝐹𝑦))
1911, 12, 18ralbinrald 43617 . . . 4 (𝐴 ∈ dom 𝐹 → (∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦(𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) ↔ ∃!𝑦 𝐴𝐹𝑦))
2010, 19bitrd 282 . . 3 (𝐴 ∈ dom 𝐹 → (∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦 ↔ ∃!𝑦 𝐴𝐹𝑦))
2120pm5.32i 578 . 2 ((𝐴 ∈ dom 𝐹 ∧ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦))
221, 5, 213bitri 300 1 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2114  ∃!weu 2652  ∀wral 3130  Vcvv 3469  {csn 4539   class class class wbr 5042  dom cdm 5532   ↾ cres 5534  Rel wrel 5537  Fun wfun 6328   defAt wdfat 43611 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-br 5043  df-opab 5105  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-res 5544  df-fun 6336  df-dfat 43614 This theorem is referenced by:  dfafv2  43627  afveu  43648  rlimdmafv  43672  tz6.12-2-afv2  43732  afv2eu  43733  tz6.12i-afv2  43738  dfatbrafv2b  43740  dfatsnafv2  43747  dfafv23  43748  dfatcolem  43750  dfatco  43751  rlimdmafv2  43753
 Copyright terms: Public domain W3C validator