| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdfat2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the predicate "defined at" not using the Fun predicate. (Contributed by Alexander van der Vekens, 22-Jul-2017.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| Ref | Expression |
|---|---|
| dfdfat2 | ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dfat 47115 | . 2 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
| 2 | relres 5997 | . . . 4 ⊢ Rel (𝐹 ↾ {𝐴}) | |
| 3 | dffun8 6569 | . . . 4 ⊢ (Fun (𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)) | |
| 4 | 2, 3 | mpbiran 709 | . . 3 ⊢ (Fun (𝐹 ↾ {𝐴}) ↔ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
| 5 | 4 | anbi2i 623 | . 2 ⊢ ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (𝐴 ∈ dom 𝐹 ∧ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)) |
| 6 | brres 5978 | . . . . . . . 8 ⊢ (𝑦 ∈ V → (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦))) | |
| 7 | 6 | elv 3469 | . . . . . . 7 ⊢ (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦)) |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝐹 → (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦))) |
| 9 | 8 | eubidv 2586 | . . . . 5 ⊢ (𝐴 ∈ dom 𝐹 → (∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦 ↔ ∃!𝑦(𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦))) |
| 10 | 9 | ralbidv 3164 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 → (∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦 ↔ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦(𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦))) |
| 11 | eldmressnsn 6016 | . . . . 5 ⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom (𝐹 ↾ {𝐴})) | |
| 12 | eldmressn 47033 | . . . . 5 ⊢ (𝑥 ∈ dom (𝐹 ↾ {𝐴}) → 𝑥 = 𝐴) | |
| 13 | velsn 4622 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 14 | 13 | biimpri 228 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → 𝑥 ∈ {𝐴}) |
| 15 | breq1 5127 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) | |
| 16 | 15 | anbi2d 630 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) ↔ (𝑥 ∈ {𝐴} ∧ 𝐴𝐹𝑦))) |
| 17 | 14, 16 | mpbirand 707 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) ↔ 𝐴𝐹𝑦)) |
| 18 | 17 | eubidv 2586 | . . . . 5 ⊢ (𝑥 = 𝐴 → (∃!𝑦(𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) ↔ ∃!𝑦 𝐴𝐹𝑦)) |
| 19 | 11, 12, 18 | ralbinrald 47118 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 → (∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦(𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) ↔ ∃!𝑦 𝐴𝐹𝑦)) |
| 20 | 10, 19 | bitrd 279 | . . 3 ⊢ (𝐴 ∈ dom 𝐹 → (∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦 ↔ ∃!𝑦 𝐴𝐹𝑦)) |
| 21 | 20 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ dom 𝐹 ∧ ∀𝑥 ∈ dom (𝐹 ↾ {𝐴})∃!𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦)) |
| 22 | 1, 5, 21 | 3bitri 297 | 1 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!weu 2568 ∀wral 3052 Vcvv 3464 {csn 4606 class class class wbr 5124 dom cdm 5659 ↾ cres 5661 Rel wrel 5664 Fun wfun 6530 defAt wdfat 47112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-res 5671 df-fun 6538 df-dfat 47115 |
| This theorem is referenced by: dfafv2 47128 afveu 47149 rlimdmafv 47173 tz6.12-2-afv2 47233 afv2eu 47234 tz6.12i-afv2 47239 dfatbrafv2b 47241 dfatsnafv2 47248 dfafv23 47249 dfatcolem 47251 dfatco 47252 rlimdmafv2 47254 |
| Copyright terms: Public domain | W3C validator |