Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nvelim Structured version   Visualization version   GIF version

Theorem nvelim 44287
Description: If a class is the universal class it doesn't belong to any class, generalization of nvel 5209. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
nvelim (𝐴 = V → ¬ 𝐴𝐵)

Proof of Theorem nvelim
StepHypRef Expression
1 nvel 5209 . 2 ¬ V ∈ 𝐵
2 eleq1 2825 . . 3 (V = 𝐴 → (V ∈ 𝐵𝐴𝐵))
32eqcoms 2745 . 2 (𝐴 = V → (V ∈ 𝐵𝐴𝐵))
41, 3mtbii 329 1 (𝐴 = V → ¬ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209   = wceq 1543  wcel 2110  Vcvv 3408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410
This theorem is referenced by:  afvvdm  44305  afvvfunressn  44307  afvvv  44309  afvvfveq  44312
  Copyright terms: Public domain W3C validator