Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nvelim Structured version   Visualization version   GIF version

Theorem nvelim 44502
Description: If a class is the universal class it doesn't belong to any class, generalization of nvel 5235. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
nvelim (𝐴 = V → ¬ 𝐴𝐵)

Proof of Theorem nvelim
StepHypRef Expression
1 nvel 5235 . 2 ¬ V ∈ 𝐵
2 eleq1 2826 . . 3 (V = 𝐴 → (V ∈ 𝐵𝐴𝐵))
32eqcoms 2746 . 2 (𝐴 = V → (V ∈ 𝐵𝐴𝐵))
41, 3mtbii 325 1 (𝐴 = V → ¬ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  wcel 2108  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424
This theorem is referenced by:  afvvdm  44520  afvvfunressn  44522  afvvv  44524  afvvfveq  44527
  Copyright terms: Public domain W3C validator