Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nvelim Structured version   Visualization version   GIF version

Theorem nvelim 47028
Description: If a class is the universal class it doesn't belong to any class, generalization of nvel 5334. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
nvelim (𝐴 = V → ¬ 𝐴𝐵)

Proof of Theorem nvelim
StepHypRef Expression
1 nvel 5334 . 2 ¬ V ∈ 𝐵
2 eleq1 2832 . . 3 (V = 𝐴 → (V ∈ 𝐵𝐴𝐵))
32eqcoms 2748 . 2 (𝐴 = V → (V ∈ 𝐵𝐴𝐵))
41, 3mtbii 326 1 (𝐴 = V → ¬ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1537  wcel 2108  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490
This theorem is referenced by:  afvvdm  47046  afvvfunressn  47048  afvvv  47050  afvvfveq  47053
  Copyright terms: Public domain W3C validator