Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nvelim | Structured version Visualization version GIF version |
Description: If a class is the universal class it doesn't belong to any class, generalization of nvel 5255. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
nvelim | ⊢ (𝐴 = V → ¬ 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvel 5255 | . 2 ⊢ ¬ V ∈ 𝐵 | |
2 | eleq1 2825 | . . 3 ⊢ (V = 𝐴 → (V ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
3 | 2 | eqcoms 2745 | . 2 ⊢ (𝐴 = V → (V ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
4 | 1, 3 | mtbii 325 | 1 ⊢ (𝐴 = V → ¬ 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 Vcvv 3441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5238 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 |
This theorem is referenced by: afvvdm 44885 afvvfunressn 44887 afvvv 44889 afvvfveq 44892 |
Copyright terms: Public domain | W3C validator |