Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nvelim | Structured version Visualization version GIF version |
Description: If a class is the universal class it doesn't belong to any class, generalization of nvel 5209. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
nvelim | ⊢ (𝐴 = V → ¬ 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvel 5209 | . 2 ⊢ ¬ V ∈ 𝐵 | |
2 | eleq1 2825 | . . 3 ⊢ (V = 𝐴 → (V ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
3 | 2 | eqcoms 2745 | . 2 ⊢ (𝐴 = V → (V ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
4 | 1, 3 | mtbii 329 | 1 ⊢ (𝐴 = V → ¬ 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2110 Vcvv 3408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 |
This theorem is referenced by: afvvdm 44305 afvvfunressn 44307 afvvv 44309 afvvfveq 44312 |
Copyright terms: Public domain | W3C validator |