Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nvelim | Structured version Visualization version GIF version |
Description: If a class is the universal class it doesn't belong to any class, generalization of nvel 5235. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
nvelim | ⊢ (𝐴 = V → ¬ 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvel 5235 | . 2 ⊢ ¬ V ∈ 𝐵 | |
2 | eleq1 2826 | . . 3 ⊢ (V = 𝐴 → (V ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
3 | 2 | eqcoms 2746 | . 2 ⊢ (𝐴 = V → (V ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
4 | 1, 3 | mtbii 325 | 1 ⊢ (𝐴 = V → ¬ 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 |
This theorem is referenced by: afvvdm 44520 afvvfunressn 44522 afvvv 44524 afvvfveq 44527 |
Copyright terms: Public domain | W3C validator |