![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrimdva | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.) (Proof shortened by Wolf Lammen, 28-Dec-2019.) |
Ref | Expression |
---|---|
ralrimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralrimdva | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimdva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
2 | 1 | expimpd 452 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒)) |
3 | 2 | expcomd 415 | . 2 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
4 | 3 | ralrimdv 3150 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2104 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ral 3060 |
This theorem is referenced by: ralxfrd 5405 ralxfrd2 5409 isoselem 7340 resixpfo 8932 findcard 9165 ordtypelem2 9516 alephinit 10092 isfin2-2 10316 axpre-sup 11166 nnsub 12260 ublbneg 12921 xralrple 13188 supxrunb1 13302 expnlbnd2 14201 faclbnd4lem4 14260 hashbc 14416 cau3lem 15305 limsupbnd2 15431 climrlim2 15495 climshftlem 15522 subcn2 15543 isercoll 15618 climsup 15620 serf0 15631 iseralt 15635 incexclem 15786 sqrt2irr 16196 pclem 16775 prmpwdvds 16841 vdwlem10 16927 vdwlem13 16930 ramtlecl 16937 ramub 16950 ramcl 16966 iscatd 17621 clatleglb 18475 mndind 18745 grpinveu 18895 dfgrp3lem 18957 issubg4 19061 gexdvds 19493 sylow2alem2 19527 obselocv 21502 scmatscm 22235 tgcn 22976 tgcnp 22977 lmconst 22985 cncls2 22997 cncls 22998 cnntr 22999 lmss 23022 cnt0 23070 isnrm2 23082 isreg2 23101 cmpsublem 23123 cmpsub 23124 tgcmp 23125 islly2 23208 kgencn2 23281 txdis 23356 txlm 23372 kqt0lem 23460 isr0 23461 regr1lem2 23464 cmphaushmeo 23524 cfinufil 23652 ufilen 23654 flimopn 23699 fbflim2 23701 fclsnei 23743 fclsbas 23745 fclsrest 23748 flimfnfcls 23752 fclscmp 23754 ufilcmp 23756 isfcf 23758 fcfnei 23759 cnpfcf 23765 tsmsres 23868 tsmsxp 23879 blbas 24156 prdsbl 24220 metss 24237 metcnp3 24269 bndth 24704 lebnumii 24712 iscfil3 25021 iscmet3lem1 25039 equivcfil 25047 equivcau 25048 ellimc3 25628 lhop1 25766 dvfsumrlim 25783 ftc1lem6 25793 fta1g 25920 dgrco 26025 plydivex 26046 fta1 26057 vieta1 26061 ulmshftlem 26137 ulmcaulem 26142 mtest 26152 cxpcn3lem 26491 cxploglim 26718 ftalem3 26815 dchrisumlem3 27230 pntibnd 27332 ostth2lem2 27373 grpoinveu 30039 nmcvcn 30215 blocnilem 30324 ubthlem3 30392 htthlem 30437 spansni 31077 bra11 31628 lmxrge0 33230 mrsubff1 34803 msubff1 34845 fnemeet2 35555 fnejoin2 35557 fin2so 36778 lindsenlbs 36786 poimirlem29 36820 poimirlem30 36821 ftc1cnnc 36863 incsequz2 36920 geomcau 36930 caushft 36932 sstotbnd2 36945 isbnd2 36954 totbndbnd 36960 ismtybndlem 36977 heibor 36992 atlatle 38493 cvlcvr1 38512 ltrnid 39309 ltrneq2 39322 nadd1suc 42444 climinf 44620 ralbinrald 46128 snlindsntorlem 47238 |
Copyright terms: Public domain | W3C validator |