| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimdva | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.) (Proof shortened by Wolf Lammen, 28-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralrimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralrimdva | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimdva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 2 | 1 | expimpd 453 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒)) |
| 3 | 2 | expcomd 416 | . 2 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
| 4 | 3 | ralrimdv 3131 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: ralxfrd 5358 ralxfrd2 5362 isoselem 7298 resixpfo 8886 findcard 9104 ordtypelem2 9448 alephinit 10026 isfin2-2 10250 axpre-sup 11100 nnsub 12208 ublbneg 12870 xralrple 13143 supxrunb1 13257 expnlbnd2 14177 faclbnd4lem4 14239 hashbc 14396 cau3lem 15298 limsupbnd2 15426 climrlim2 15490 climshftlem 15517 subcn2 15538 isercoll 15611 climsup 15613 serf0 15624 iseralt 15628 incexclem 15779 sqrt2irr 16194 pclem 16786 prmpwdvds 16852 vdwlem10 16938 vdwlem13 16941 ramtlecl 16948 ramub 16961 ramcl 16977 iscatd 17615 clatleglb 18460 mndind 18738 grpinveu 18889 dfgrp3lem 18953 issubg4 19060 gexdvds 19499 sylow2alem2 19533 obselocv 21671 scmatscm 22434 tgcn 23173 tgcnp 23174 lmconst 23182 cncls2 23194 cncls 23195 cnntr 23196 lmss 23219 cnt0 23267 isnrm2 23279 isreg2 23298 cmpsublem 23320 cmpsub 23321 tgcmp 23322 islly2 23405 kgencn2 23478 txdis 23553 txlm 23569 kqt0lem 23657 isr0 23658 regr1lem2 23661 cmphaushmeo 23721 cfinufil 23849 ufilen 23851 flimopn 23896 fbflim2 23898 fclsnei 23940 fclsbas 23942 fclsrest 23945 flimfnfcls 23949 fclscmp 23951 ufilcmp 23953 isfcf 23955 fcfnei 23956 cnpfcf 23962 tsmsres 24065 tsmsxp 24076 blbas 24352 prdsbl 24413 metss 24430 metcnp3 24462 bndth 24891 lebnumii 24899 iscfil3 25207 iscmet3lem1 25225 equivcfil 25233 equivcau 25234 ellimc3 25814 lhop1 25953 dvfsumrlim 25972 ftc1lem6 25982 fta1g 26109 dgrco 26215 plydivex 26239 fta1 26250 vieta1 26254 ulmshftlem 26332 ulmcaulem 26337 mtest 26347 cxpcn3lem 26691 cxploglim 26922 ftalem3 27019 dchrisumlem3 27436 pntibnd 27538 ostth2lem2 27579 n0subs 28294 grpoinveu 30499 nmcvcn 30675 blocnilem 30784 ubthlem3 30852 htthlem 30897 spansni 31537 bra11 32088 lmxrge0 33936 mrsubff1 35495 msubff1 35537 fnemeet2 36349 fnejoin2 36351 fin2so 37595 lindsenlbs 37603 poimirlem29 37637 poimirlem30 37638 ftc1cnnc 37680 incsequz2 37737 geomcau 37747 caushft 37749 sstotbnd2 37762 isbnd2 37771 totbndbnd 37777 ismtybndlem 37794 heibor 37809 atlatle 39307 cvlcvr1 39326 ltrnid 40123 ltrneq2 40136 nadd1suc 43375 climinf 45598 ralbinrald 47117 snlindsntorlem 48453 |
| Copyright terms: Public domain | W3C validator |