| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimdva | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.) (Proof shortened by Wolf Lammen, 28-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralrimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralrimdva | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimdva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 2 | 1 | expimpd 453 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒)) |
| 3 | 2 | expcomd 416 | . 2 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
| 4 | 3 | ralrimdv 3131 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: ralxfrd 5358 ralxfrd2 5362 isoselem 7298 resixpfo 8886 findcard 9104 ordtypelem2 9448 alephinit 10024 isfin2-2 10248 axpre-sup 11098 nnsub 12206 ublbneg 12868 xralrple 13141 supxrunb1 13255 expnlbnd2 14175 faclbnd4lem4 14237 hashbc 14394 cau3lem 15297 limsupbnd2 15425 climrlim2 15489 climshftlem 15516 subcn2 15537 isercoll 15610 climsup 15612 serf0 15623 iseralt 15627 incexclem 15778 sqrt2irr 16193 pclem 16785 prmpwdvds 16851 vdwlem10 16937 vdwlem13 16940 ramtlecl 16947 ramub 16960 ramcl 16976 iscatd 17614 clatleglb 18459 mndind 18737 grpinveu 18888 dfgrp3lem 18952 issubg4 19059 gexdvds 19498 sylow2alem2 19532 obselocv 21670 scmatscm 22433 tgcn 23172 tgcnp 23173 lmconst 23181 cncls2 23193 cncls 23194 cnntr 23195 lmss 23218 cnt0 23266 isnrm2 23278 isreg2 23297 cmpsublem 23319 cmpsub 23320 tgcmp 23321 islly2 23404 kgencn2 23477 txdis 23552 txlm 23568 kqt0lem 23656 isr0 23657 regr1lem2 23660 cmphaushmeo 23720 cfinufil 23848 ufilen 23850 flimopn 23895 fbflim2 23897 fclsnei 23939 fclsbas 23941 fclsrest 23944 flimfnfcls 23948 fclscmp 23950 ufilcmp 23952 isfcf 23954 fcfnei 23955 cnpfcf 23961 tsmsres 24064 tsmsxp 24075 blbas 24351 prdsbl 24412 metss 24429 metcnp3 24461 bndth 24890 lebnumii 24898 iscfil3 25206 iscmet3lem1 25224 equivcfil 25232 equivcau 25233 ellimc3 25813 lhop1 25952 dvfsumrlim 25971 ftc1lem6 25981 fta1g 26108 dgrco 26214 plydivex 26238 fta1 26249 vieta1 26253 ulmshftlem 26331 ulmcaulem 26336 mtest 26346 cxpcn3lem 26690 cxploglim 26921 ftalem3 27018 dchrisumlem3 27435 pntibnd 27537 ostth2lem2 27578 n0subs 28293 grpoinveu 30498 nmcvcn 30674 blocnilem 30783 ubthlem3 30851 htthlem 30896 spansni 31536 bra11 32087 lmxrge0 33935 mrsubff1 35494 msubff1 35536 fnemeet2 36348 fnejoin2 36350 fin2so 37594 lindsenlbs 37602 poimirlem29 37636 poimirlem30 37637 ftc1cnnc 37679 incsequz2 37736 geomcau 37746 caushft 37748 sstotbnd2 37761 isbnd2 37770 totbndbnd 37776 ismtybndlem 37793 heibor 37808 atlatle 39306 cvlcvr1 39325 ltrnid 40122 ltrneq2 40135 nadd1suc 43374 climinf 45597 ralbinrald 47116 snlindsntorlem 48452 |
| Copyright terms: Public domain | W3C validator |