| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimdva | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.) (Proof shortened by Wolf Lammen, 28-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralrimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralrimdva | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimdva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 2 | 1 | expimpd 453 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒)) |
| 3 | 2 | expcomd 416 | . 2 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
| 4 | 3 | ralrimdv 3127 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: ralxfrd 5347 ralxfrd2 5351 isoselem 7278 resixpfo 8863 findcard 9077 ordtypelem2 9411 alephinit 9989 isfin2-2 10213 axpre-sup 11063 nnsub 12172 ublbneg 12834 xralrple 13107 supxrunb1 13221 expnlbnd2 14141 faclbnd4lem4 14203 hashbc 14360 cau3lem 15262 limsupbnd2 15390 climrlim2 15454 climshftlem 15481 subcn2 15502 isercoll 15575 climsup 15577 serf0 15588 iseralt 15592 incexclem 15743 sqrt2irr 16158 pclem 16750 prmpwdvds 16816 vdwlem10 16902 vdwlem13 16905 ramtlecl 16912 ramub 16925 ramcl 16941 iscatd 17579 clatleglb 18424 mndind 18702 grpinveu 18853 dfgrp3lem 18917 issubg4 19024 gexdvds 19463 sylow2alem2 19497 obselocv 21635 scmatscm 22398 tgcn 23137 tgcnp 23138 lmconst 23146 cncls2 23158 cncls 23159 cnntr 23160 lmss 23183 cnt0 23231 isnrm2 23243 isreg2 23262 cmpsublem 23284 cmpsub 23285 tgcmp 23286 islly2 23369 kgencn2 23442 txdis 23517 txlm 23533 kqt0lem 23621 isr0 23622 regr1lem2 23625 cmphaushmeo 23685 cfinufil 23813 ufilen 23815 flimopn 23860 fbflim2 23862 fclsnei 23904 fclsbas 23906 fclsrest 23909 flimfnfcls 23913 fclscmp 23915 ufilcmp 23917 isfcf 23919 fcfnei 23920 cnpfcf 23926 tsmsres 24029 tsmsxp 24040 blbas 24316 prdsbl 24377 metss 24394 metcnp3 24426 bndth 24855 lebnumii 24863 iscfil3 25171 iscmet3lem1 25189 equivcfil 25197 equivcau 25198 ellimc3 25778 lhop1 25917 dvfsumrlim 25936 ftc1lem6 25946 fta1g 26073 dgrco 26179 plydivex 26203 fta1 26214 vieta1 26218 ulmshftlem 26296 ulmcaulem 26301 mtest 26311 cxpcn3lem 26655 cxploglim 26886 ftalem3 26983 dchrisumlem3 27400 pntibnd 27502 ostth2lem2 27543 n0subs 28260 grpoinveu 30467 nmcvcn 30643 blocnilem 30752 ubthlem3 30820 htthlem 30865 spansni 31505 bra11 32056 lmxrge0 33935 mrsubff1 35507 msubff1 35549 fnemeet2 36361 fnejoin2 36363 fin2so 37607 lindsenlbs 37615 poimirlem29 37649 poimirlem30 37650 ftc1cnnc 37692 incsequz2 37749 geomcau 37759 caushft 37761 sstotbnd2 37774 isbnd2 37783 totbndbnd 37789 ismtybndlem 37806 heibor 37821 atlatle 39319 cvlcvr1 39338 ltrnid 40134 ltrneq2 40147 nadd1suc 43385 climinf 45607 ralbinrald 47126 snlindsntorlem 48475 |
| Copyright terms: Public domain | W3C validator |