| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimdva | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.) (Proof shortened by Wolf Lammen, 28-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralrimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralrimdva | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimdva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 2 | 1 | expimpd 453 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒)) |
| 3 | 2 | expcomd 416 | . 2 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
| 4 | 3 | ralrimdv 3138 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3052 |
| This theorem is referenced by: ralxfrd 5378 ralxfrd2 5382 isoselem 7333 resixpfo 8948 findcard 9175 ordtypelem2 9531 alephinit 10107 isfin2-2 10331 axpre-sup 11181 nnsub 12282 ublbneg 12947 xralrple 13219 supxrunb1 13333 expnlbnd2 14250 faclbnd4lem4 14312 hashbc 14469 cau3lem 15371 limsupbnd2 15497 climrlim2 15561 climshftlem 15588 subcn2 15609 isercoll 15682 climsup 15684 serf0 15695 iseralt 15699 incexclem 15850 sqrt2irr 16265 pclem 16856 prmpwdvds 16922 vdwlem10 17008 vdwlem13 17011 ramtlecl 17018 ramub 17031 ramcl 17047 iscatd 17683 clatleglb 18526 mndind 18804 grpinveu 18955 dfgrp3lem 19019 issubg4 19126 gexdvds 19563 sylow2alem2 19597 obselocv 21686 scmatscm 22449 tgcn 23188 tgcnp 23189 lmconst 23197 cncls2 23209 cncls 23210 cnntr 23211 lmss 23234 cnt0 23282 isnrm2 23294 isreg2 23313 cmpsublem 23335 cmpsub 23336 tgcmp 23337 islly2 23420 kgencn2 23493 txdis 23568 txlm 23584 kqt0lem 23672 isr0 23673 regr1lem2 23676 cmphaushmeo 23736 cfinufil 23864 ufilen 23866 flimopn 23911 fbflim2 23913 fclsnei 23955 fclsbas 23957 fclsrest 23960 flimfnfcls 23964 fclscmp 23966 ufilcmp 23968 isfcf 23970 fcfnei 23971 cnpfcf 23977 tsmsres 24080 tsmsxp 24091 blbas 24367 prdsbl 24428 metss 24445 metcnp3 24477 bndth 24906 lebnumii 24914 iscfil3 25223 iscmet3lem1 25241 equivcfil 25249 equivcau 25250 ellimc3 25830 lhop1 25969 dvfsumrlim 25988 ftc1lem6 25998 fta1g 26125 dgrco 26231 plydivex 26255 fta1 26266 vieta1 26270 ulmshftlem 26348 ulmcaulem 26353 mtest 26363 cxpcn3lem 26707 cxploglim 26938 ftalem3 27035 dchrisumlem3 27452 pntibnd 27554 ostth2lem2 27595 n0subs 28277 grpoinveu 30446 nmcvcn 30622 blocnilem 30731 ubthlem3 30799 htthlem 30844 spansni 31484 bra11 32035 lmxrge0 33929 mrsubff1 35482 msubff1 35524 fnemeet2 36331 fnejoin2 36333 fin2so 37577 lindsenlbs 37585 poimirlem29 37619 poimirlem30 37620 ftc1cnnc 37662 incsequz2 37719 geomcau 37729 caushft 37731 sstotbnd2 37744 isbnd2 37753 totbndbnd 37759 ismtybndlem 37776 heibor 37791 atlatle 39284 cvlcvr1 39303 ltrnid 40100 ltrneq2 40113 nadd1suc 43363 climinf 45583 ralbinrald 47099 snlindsntorlem 48394 |
| Copyright terms: Public domain | W3C validator |