| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimdva | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.) (Proof shortened by Wolf Lammen, 28-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralrimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralrimdva | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimdva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 2 | 1 | expimpd 453 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒)) |
| 3 | 2 | expcomd 416 | . 2 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
| 4 | 3 | ralrimdv 3131 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: ralxfrd 5363 ralxfrd2 5367 isoselem 7316 resixpfo 8909 findcard 9127 ordtypelem2 9472 alephinit 10048 isfin2-2 10272 axpre-sup 11122 nnsub 12230 ublbneg 12892 xralrple 13165 supxrunb1 13279 expnlbnd2 14199 faclbnd4lem4 14261 hashbc 14418 cau3lem 15321 limsupbnd2 15449 climrlim2 15513 climshftlem 15540 subcn2 15561 isercoll 15634 climsup 15636 serf0 15647 iseralt 15651 incexclem 15802 sqrt2irr 16217 pclem 16809 prmpwdvds 16875 vdwlem10 16961 vdwlem13 16964 ramtlecl 16971 ramub 16984 ramcl 17000 iscatd 17634 clatleglb 18477 mndind 18755 grpinveu 18906 dfgrp3lem 18970 issubg4 19077 gexdvds 19514 sylow2alem2 19548 obselocv 21637 scmatscm 22400 tgcn 23139 tgcnp 23140 lmconst 23148 cncls2 23160 cncls 23161 cnntr 23162 lmss 23185 cnt0 23233 isnrm2 23245 isreg2 23264 cmpsublem 23286 cmpsub 23287 tgcmp 23288 islly2 23371 kgencn2 23444 txdis 23519 txlm 23535 kqt0lem 23623 isr0 23624 regr1lem2 23627 cmphaushmeo 23687 cfinufil 23815 ufilen 23817 flimopn 23862 fbflim2 23864 fclsnei 23906 fclsbas 23908 fclsrest 23911 flimfnfcls 23915 fclscmp 23917 ufilcmp 23919 isfcf 23921 fcfnei 23922 cnpfcf 23928 tsmsres 24031 tsmsxp 24042 blbas 24318 prdsbl 24379 metss 24396 metcnp3 24428 bndth 24857 lebnumii 24865 iscfil3 25173 iscmet3lem1 25191 equivcfil 25199 equivcau 25200 ellimc3 25780 lhop1 25919 dvfsumrlim 25938 ftc1lem6 25948 fta1g 26075 dgrco 26181 plydivex 26205 fta1 26216 vieta1 26220 ulmshftlem 26298 ulmcaulem 26303 mtest 26313 cxpcn3lem 26657 cxploglim 26888 ftalem3 26985 dchrisumlem3 27402 pntibnd 27504 ostth2lem2 27545 n0subs 28253 grpoinveu 30448 nmcvcn 30624 blocnilem 30733 ubthlem3 30801 htthlem 30846 spansni 31486 bra11 32037 lmxrge0 33942 mrsubff1 35501 msubff1 35543 fnemeet2 36355 fnejoin2 36357 fin2so 37601 lindsenlbs 37609 poimirlem29 37643 poimirlem30 37644 ftc1cnnc 37686 incsequz2 37743 geomcau 37753 caushft 37755 sstotbnd2 37768 isbnd2 37777 totbndbnd 37783 ismtybndlem 37800 heibor 37815 atlatle 39313 cvlcvr1 39332 ltrnid 40129 ltrneq2 40142 nadd1suc 43381 climinf 45604 ralbinrald 47123 snlindsntorlem 48459 |
| Copyright terms: Public domain | W3C validator |