![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrimdva | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.) (Proof shortened by Wolf Lammen, 28-Dec-2019.) |
Ref | Expression |
---|---|
ralrimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralrimdva | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimdva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
2 | 1 | expimpd 453 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒)) |
3 | 2 | expcomd 416 | . 2 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
4 | 3 | ralrimdv 3158 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3068 |
This theorem is referenced by: ralxfrd 5426 ralxfrd2 5430 isoselem 7377 resixpfo 8994 findcard 9229 ordtypelem2 9588 alephinit 10164 isfin2-2 10388 axpre-sup 11238 nnsub 12337 ublbneg 12998 xralrple 13267 supxrunb1 13381 expnlbnd2 14283 faclbnd4lem4 14345 hashbc 14502 cau3lem 15403 limsupbnd2 15529 climrlim2 15593 climshftlem 15620 subcn2 15641 isercoll 15716 climsup 15718 serf0 15729 iseralt 15733 incexclem 15884 sqrt2irr 16297 pclem 16885 prmpwdvds 16951 vdwlem10 17037 vdwlem13 17040 ramtlecl 17047 ramub 17060 ramcl 17076 iscatd 17731 clatleglb 18588 mndind 18863 grpinveu 19014 dfgrp3lem 19078 issubg4 19185 gexdvds 19626 sylow2alem2 19660 obselocv 21771 scmatscm 22540 tgcn 23281 tgcnp 23282 lmconst 23290 cncls2 23302 cncls 23303 cnntr 23304 lmss 23327 cnt0 23375 isnrm2 23387 isreg2 23406 cmpsublem 23428 cmpsub 23429 tgcmp 23430 islly2 23513 kgencn2 23586 txdis 23661 txlm 23677 kqt0lem 23765 isr0 23766 regr1lem2 23769 cmphaushmeo 23829 cfinufil 23957 ufilen 23959 flimopn 24004 fbflim2 24006 fclsnei 24048 fclsbas 24050 fclsrest 24053 flimfnfcls 24057 fclscmp 24059 ufilcmp 24061 isfcf 24063 fcfnei 24064 cnpfcf 24070 tsmsres 24173 tsmsxp 24184 blbas 24461 prdsbl 24525 metss 24542 metcnp3 24574 bndth 25009 lebnumii 25017 iscfil3 25326 iscmet3lem1 25344 equivcfil 25352 equivcau 25353 ellimc3 25934 lhop1 26073 dvfsumrlim 26092 ftc1lem6 26102 fta1g 26229 dgrco 26335 plydivex 26357 fta1 26368 vieta1 26372 ulmshftlem 26450 ulmcaulem 26455 mtest 26465 cxpcn3lem 26808 cxploglim 27039 ftalem3 27136 dchrisumlem3 27553 pntibnd 27655 ostth2lem2 27696 n0subs 28378 grpoinveu 30551 nmcvcn 30727 blocnilem 30836 ubthlem3 30904 htthlem 30949 spansni 31589 bra11 32140 lmxrge0 33898 mrsubff1 35482 msubff1 35524 fnemeet2 36333 fnejoin2 36335 fin2so 37567 lindsenlbs 37575 poimirlem29 37609 poimirlem30 37610 ftc1cnnc 37652 incsequz2 37709 geomcau 37719 caushft 37721 sstotbnd2 37734 isbnd2 37743 totbndbnd 37749 ismtybndlem 37766 heibor 37781 atlatle 39276 cvlcvr1 39295 ltrnid 40092 ltrneq2 40105 nadd1suc 43354 climinf 45527 ralbinrald 47037 snlindsntorlem 48199 |
Copyright terms: Public domain | W3C validator |