![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrimdva | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.) (Proof shortened by Wolf Lammen, 28-Dec-2019.) |
Ref | Expression |
---|---|
ralrimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralrimdva | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimdva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
2 | 1 | expimpd 447 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒)) |
3 | 2 | expcomd 408 | . 2 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
4 | 3 | ralrimdv 3149 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2106 ∀wral 3089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ral 3094 |
This theorem is referenced by: ralxfrd 5120 ralxfrd2 5124 isoselem 6863 resixpfo 8232 findcard 8487 ordtypelem2 8713 alephinit 9251 isfin2-2 9476 axpre-sup 10326 nnsub 11419 ublbneg 12080 xralrple 12348 supxrunb1 12461 expnlbnd2 13314 faclbnd4lem4 13401 hashbc 13551 cau3lem 14501 limsupbnd2 14622 climrlim2 14686 climshftlem 14713 subcn2 14733 isercoll 14806 climsup 14808 serf0 14819 iseralt 14823 incexclem 14972 sqrt2irr 15382 pclem 15947 prmpwdvds 16012 vdwlem10 16098 vdwlem13 16101 ramtlecl 16108 ramub 16121 ramcl 16137 iscatd 16719 clatleglb 17512 mrcmndind 17752 grpinveu 17843 dfgrp3lem 17900 issubg4 17997 gexdvds 18383 sylow2alem2 18417 obselocv 20471 scmatscm 20724 tgcn 21464 tgcnp 21465 lmconst 21473 cncls2 21485 cncls 21486 cnntr 21487 lmss 21510 cnt0 21558 isnrm2 21570 isreg2 21589 cmpsublem 21611 cmpsub 21612 tgcmp 21613 islly2 21696 kgencn2 21769 txdis 21844 txlm 21860 kqt0lem 21948 isr0 21949 regr1lem2 21952 cmphaushmeo 22012 cfinufil 22140 ufilen 22142 flimopn 22187 fbflim2 22189 fclsnei 22231 fclsbas 22233 fclsrest 22236 flimfnfcls 22240 fclscmp 22242 ufilcmp 22244 isfcf 22246 fcfnei 22247 cnpfcf 22253 tsmsres 22355 tsmsxp 22366 blbas 22643 prdsbl 22704 metss 22721 metcnp3 22753 bndth 23165 lebnumii 23173 iscfil3 23479 iscmet3lem1 23497 equivcfil 23505 equivcau 23506 ellimc3 24080 lhop1 24214 dvfsumrlim 24231 ftc1lem6 24241 fta1g 24364 dgrco 24468 plydivex 24489 fta1 24500 vieta1 24504 ulmshftlem 24580 ulmcaulem 24585 mtest 24595 cxpcn3lem 24928 cxploglim 25156 ftalem3 25253 dchrisumlem3 25632 pntibnd 25734 ostth2lem2 25775 grpoinveu 27946 nmcvcn 28122 blocnilem 28231 ubthlem3 28300 htthlem 28346 spansni 28988 bra11 29539 lmxrge0 30596 mrsubff1 32010 msubff1 32052 fnemeet2 32950 fnejoin2 32952 fin2so 34016 lindsenlbs 34025 poimirlem29 34059 poimirlem30 34060 ftc1cnnc 34104 incsequz2 34164 geomcau 34174 caushft 34176 sstotbnd2 34192 isbnd2 34201 totbndbnd 34207 ismtybndlem 34224 heibor 34239 atlatle 35469 cvlcvr1 35488 ltrnid 36284 ltrneq2 36297 climinf 40739 ralbinrald 42156 snlindsntorlem 43267 |
Copyright terms: Public domain | W3C validator |