Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralrimdva | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.) (Proof shortened by Wolf Lammen, 28-Dec-2019.) |
Ref | Expression |
---|---|
ralrimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralrimdva | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimdva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
2 | 1 | expimpd 453 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒)) |
3 | 2 | expcomd 416 | . 2 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
4 | 3 | ralrimdv 3111 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ral 3068 |
This theorem is referenced by: ralxfrd 5326 ralxfrd2 5330 isoselem 7192 resixpfo 8682 findcard 8908 ordtypelem2 9208 alephinit 9782 isfin2-2 10006 axpre-sup 10856 nnsub 11947 ublbneg 12602 xralrple 12868 supxrunb1 12982 expnlbnd2 13877 faclbnd4lem4 13938 hashbc 14093 cau3lem 14994 limsupbnd2 15120 climrlim2 15184 climshftlem 15211 subcn2 15232 isercoll 15307 climsup 15309 serf0 15320 iseralt 15324 incexclem 15476 sqrt2irr 15886 pclem 16467 prmpwdvds 16533 vdwlem10 16619 vdwlem13 16622 ramtlecl 16629 ramub 16642 ramcl 16658 iscatd 17299 clatleglb 18151 mndind 18381 grpinveu 18529 dfgrp3lem 18588 issubg4 18689 gexdvds 19104 sylow2alem2 19138 obselocv 20845 scmatscm 21570 tgcn 22311 tgcnp 22312 lmconst 22320 cncls2 22332 cncls 22333 cnntr 22334 lmss 22357 cnt0 22405 isnrm2 22417 isreg2 22436 cmpsublem 22458 cmpsub 22459 tgcmp 22460 islly2 22543 kgencn2 22616 txdis 22691 txlm 22707 kqt0lem 22795 isr0 22796 regr1lem2 22799 cmphaushmeo 22859 cfinufil 22987 ufilen 22989 flimopn 23034 fbflim2 23036 fclsnei 23078 fclsbas 23080 fclsrest 23083 flimfnfcls 23087 fclscmp 23089 ufilcmp 23091 isfcf 23093 fcfnei 23094 cnpfcf 23100 tsmsres 23203 tsmsxp 23214 blbas 23491 prdsbl 23553 metss 23570 metcnp3 23602 bndth 24027 lebnumii 24035 iscfil3 24342 iscmet3lem1 24360 equivcfil 24368 equivcau 24369 ellimc3 24948 lhop1 25083 dvfsumrlim 25100 ftc1lem6 25110 fta1g 25237 dgrco 25341 plydivex 25362 fta1 25373 vieta1 25377 ulmshftlem 25453 ulmcaulem 25458 mtest 25468 cxpcn3lem 25805 cxploglim 26032 ftalem3 26129 dchrisumlem3 26544 pntibnd 26646 ostth2lem2 26687 grpoinveu 28782 nmcvcn 28958 blocnilem 29067 ubthlem3 29135 htthlem 29180 spansni 29820 bra11 30371 lmxrge0 31804 mrsubff1 33376 msubff1 33418 fnemeet2 34483 fnejoin2 34485 fin2so 35691 lindsenlbs 35699 poimirlem29 35733 poimirlem30 35734 ftc1cnnc 35776 incsequz2 35834 geomcau 35844 caushft 35846 sstotbnd2 35859 isbnd2 35868 totbndbnd 35874 ismtybndlem 35891 heibor 35906 atlatle 37261 cvlcvr1 37280 ltrnid 38076 ltrneq2 38089 climinf 43037 ralbinrald 44501 snlindsntorlem 45699 |
Copyright terms: Public domain | W3C validator |