| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimdva | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.) (Proof shortened by Wolf Lammen, 28-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralrimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralrimdva | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimdva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 2 | 1 | expimpd 453 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒)) |
| 3 | 2 | expcomd 416 | . 2 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
| 4 | 3 | ralrimdv 3132 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3046 |
| This theorem is referenced by: ralxfrd 5366 ralxfrd2 5370 isoselem 7319 resixpfo 8912 findcard 9133 ordtypelem2 9479 alephinit 10055 isfin2-2 10279 axpre-sup 11129 nnsub 12237 ublbneg 12899 xralrple 13172 supxrunb1 13286 expnlbnd2 14206 faclbnd4lem4 14268 hashbc 14425 cau3lem 15328 limsupbnd2 15456 climrlim2 15520 climshftlem 15547 subcn2 15568 isercoll 15641 climsup 15643 serf0 15654 iseralt 15658 incexclem 15809 sqrt2irr 16224 pclem 16816 prmpwdvds 16882 vdwlem10 16968 vdwlem13 16971 ramtlecl 16978 ramub 16991 ramcl 17007 iscatd 17641 clatleglb 18484 mndind 18762 grpinveu 18913 dfgrp3lem 18977 issubg4 19084 gexdvds 19521 sylow2alem2 19555 obselocv 21644 scmatscm 22407 tgcn 23146 tgcnp 23147 lmconst 23155 cncls2 23167 cncls 23168 cnntr 23169 lmss 23192 cnt0 23240 isnrm2 23252 isreg2 23271 cmpsublem 23293 cmpsub 23294 tgcmp 23295 islly2 23378 kgencn2 23451 txdis 23526 txlm 23542 kqt0lem 23630 isr0 23631 regr1lem2 23634 cmphaushmeo 23694 cfinufil 23822 ufilen 23824 flimopn 23869 fbflim2 23871 fclsnei 23913 fclsbas 23915 fclsrest 23918 flimfnfcls 23922 fclscmp 23924 ufilcmp 23926 isfcf 23928 fcfnei 23929 cnpfcf 23935 tsmsres 24038 tsmsxp 24049 blbas 24325 prdsbl 24386 metss 24403 metcnp3 24435 bndth 24864 lebnumii 24872 iscfil3 25180 iscmet3lem1 25198 equivcfil 25206 equivcau 25207 ellimc3 25787 lhop1 25926 dvfsumrlim 25945 ftc1lem6 25955 fta1g 26082 dgrco 26188 plydivex 26212 fta1 26223 vieta1 26227 ulmshftlem 26305 ulmcaulem 26310 mtest 26320 cxpcn3lem 26664 cxploglim 26895 ftalem3 26992 dchrisumlem3 27409 pntibnd 27511 ostth2lem2 27552 n0subs 28260 grpoinveu 30455 nmcvcn 30631 blocnilem 30740 ubthlem3 30808 htthlem 30853 spansni 31493 bra11 32044 lmxrge0 33949 mrsubff1 35508 msubff1 35550 fnemeet2 36362 fnejoin2 36364 fin2so 37608 lindsenlbs 37616 poimirlem29 37650 poimirlem30 37651 ftc1cnnc 37693 incsequz2 37750 geomcau 37760 caushft 37762 sstotbnd2 37775 isbnd2 37784 totbndbnd 37790 ismtybndlem 37807 heibor 37822 atlatle 39320 cvlcvr1 39339 ltrnid 40136 ltrneq2 40149 nadd1suc 43388 climinf 45611 ralbinrald 47127 snlindsntorlem 48463 |
| Copyright terms: Public domain | W3C validator |