| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimdva | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.) (Proof shortened by Wolf Lammen, 28-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralrimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralrimdva | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimdva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 2 | 1 | expimpd 453 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒)) |
| 3 | 2 | expcomd 416 | . 2 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
| 4 | 3 | ralrimdv 3130 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3048 |
| This theorem is referenced by: ralxfrd 5344 ralxfrd2 5348 isoselem 7275 resixpfo 8860 findcard 9073 ordtypelem2 9405 alephinit 9986 isfin2-2 10210 axpre-sup 11060 nnsub 12169 ublbneg 12831 xralrple 13104 supxrunb1 13218 expnlbnd2 14141 faclbnd4lem4 14203 hashbc 14360 cau3lem 15262 limsupbnd2 15390 climrlim2 15454 climshftlem 15481 subcn2 15502 isercoll 15575 climsup 15577 serf0 15588 iseralt 15592 incexclem 15743 sqrt2irr 16158 pclem 16750 prmpwdvds 16816 vdwlem10 16902 vdwlem13 16905 ramtlecl 16912 ramub 16925 ramcl 16941 iscatd 17579 clatleglb 18424 mndind 18736 grpinveu 18887 dfgrp3lem 18951 issubg4 19058 gexdvds 19496 sylow2alem2 19530 obselocv 21665 scmatscm 22428 tgcn 23167 tgcnp 23168 lmconst 23176 cncls2 23188 cncls 23189 cnntr 23190 lmss 23213 cnt0 23261 isnrm2 23273 isreg2 23292 cmpsublem 23314 cmpsub 23315 tgcmp 23316 islly2 23399 kgencn2 23472 txdis 23547 txlm 23563 kqt0lem 23651 isr0 23652 regr1lem2 23655 cmphaushmeo 23715 cfinufil 23843 ufilen 23845 flimopn 23890 fbflim2 23892 fclsnei 23934 fclsbas 23936 fclsrest 23939 flimfnfcls 23943 fclscmp 23945 ufilcmp 23947 isfcf 23949 fcfnei 23950 cnpfcf 23956 tsmsres 24059 tsmsxp 24070 blbas 24345 prdsbl 24406 metss 24423 metcnp3 24455 bndth 24884 lebnumii 24892 iscfil3 25200 iscmet3lem1 25218 equivcfil 25226 equivcau 25227 ellimc3 25807 lhop1 25946 dvfsumrlim 25965 ftc1lem6 25975 fta1g 26102 dgrco 26208 plydivex 26232 fta1 26243 vieta1 26247 ulmshftlem 26325 ulmcaulem 26330 mtest 26340 cxpcn3lem 26684 cxploglim 26915 ftalem3 27012 dchrisumlem3 27429 pntibnd 27531 ostth2lem2 27572 n0subs 28289 grpoinveu 30499 nmcvcn 30675 blocnilem 30784 ubthlem3 30852 htthlem 30897 spansni 31537 bra11 32088 lmxrge0 33965 mrsubff1 35558 msubff1 35600 fnemeet2 36411 fnejoin2 36413 fin2so 37646 lindsenlbs 37654 poimirlem29 37688 poimirlem30 37689 ftc1cnnc 37731 incsequz2 37788 geomcau 37798 caushft 37800 sstotbnd2 37813 isbnd2 37822 totbndbnd 37828 ismtybndlem 37845 heibor 37860 atlatle 39418 cvlcvr1 39437 ltrnid 40233 ltrneq2 40246 nadd1suc 43484 climinf 45705 ralbinrald 47221 snlindsntorlem 48570 |
| Copyright terms: Public domain | W3C validator |