![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrimdva | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.) (Proof shortened by Wolf Lammen, 28-Dec-2019.) |
Ref | Expression |
---|---|
ralrimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralrimdva | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimdva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
2 | 1 | expimpd 455 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒)) |
3 | 2 | expcomd 418 | . 2 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
4 | 3 | ralrimdv 3153 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ral 3063 |
This theorem is referenced by: ralxfrd 5407 ralxfrd2 5411 isoselem 7338 resixpfo 8930 findcard 9163 ordtypelem2 9514 alephinit 10090 isfin2-2 10314 axpre-sup 11164 nnsub 12256 ublbneg 12917 xralrple 13184 supxrunb1 13298 expnlbnd2 14197 faclbnd4lem4 14256 hashbc 14412 cau3lem 15301 limsupbnd2 15427 climrlim2 15491 climshftlem 15518 subcn2 15539 isercoll 15614 climsup 15616 serf0 15627 iseralt 15631 incexclem 15782 sqrt2irr 16192 pclem 16771 prmpwdvds 16837 vdwlem10 16923 vdwlem13 16926 ramtlecl 16933 ramub 16946 ramcl 16962 iscatd 17617 clatleglb 18471 mndind 18709 grpinveu 18859 dfgrp3lem 18921 issubg4 19025 gexdvds 19452 sylow2alem2 19486 obselocv 21283 scmatscm 22015 tgcn 22756 tgcnp 22757 lmconst 22765 cncls2 22777 cncls 22778 cnntr 22779 lmss 22802 cnt0 22850 isnrm2 22862 isreg2 22881 cmpsublem 22903 cmpsub 22904 tgcmp 22905 islly2 22988 kgencn2 23061 txdis 23136 txlm 23152 kqt0lem 23240 isr0 23241 regr1lem2 23244 cmphaushmeo 23304 cfinufil 23432 ufilen 23434 flimopn 23479 fbflim2 23481 fclsnei 23523 fclsbas 23525 fclsrest 23528 flimfnfcls 23532 fclscmp 23534 ufilcmp 23536 isfcf 23538 fcfnei 23539 cnpfcf 23545 tsmsres 23648 tsmsxp 23659 blbas 23936 prdsbl 24000 metss 24017 metcnp3 24049 bndth 24474 lebnumii 24482 iscfil3 24790 iscmet3lem1 24808 equivcfil 24816 equivcau 24817 ellimc3 25396 lhop1 25531 dvfsumrlim 25548 ftc1lem6 25558 fta1g 25685 dgrco 25789 plydivex 25810 fta1 25821 vieta1 25825 ulmshftlem 25901 ulmcaulem 25906 mtest 25916 cxpcn3lem 26255 cxploglim 26482 ftalem3 26579 dchrisumlem3 26994 pntibnd 27096 ostth2lem2 27137 grpoinveu 29772 nmcvcn 29948 blocnilem 30057 ubthlem3 30125 htthlem 30170 spansni 30810 bra11 31361 lmxrge0 32932 mrsubff1 34505 msubff1 34547 fnemeet2 35252 fnejoin2 35254 fin2so 36475 lindsenlbs 36483 poimirlem29 36517 poimirlem30 36518 ftc1cnnc 36560 incsequz2 36617 geomcau 36627 caushft 36629 sstotbnd2 36642 isbnd2 36651 totbndbnd 36657 ismtybndlem 36674 heibor 36689 atlatle 38190 cvlcvr1 38209 ltrnid 39006 ltrneq2 39019 nadd1suc 42142 climinf 44322 ralbinrald 45830 snlindsntorlem 47151 |
Copyright terms: Public domain | W3C validator |