![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrimdva | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.) (Proof shortened by Wolf Lammen, 28-Dec-2019.) |
Ref | Expression |
---|---|
ralrimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralrimdva | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimdva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
2 | 1 | expimpd 453 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒)) |
3 | 2 | expcomd 416 | . 2 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
4 | 3 | ralrimdv 3149 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3059 |
This theorem is referenced by: ralxfrd 5413 ralxfrd2 5417 isoselem 7360 resixpfo 8974 findcard 9201 ordtypelem2 9556 alephinit 10132 isfin2-2 10356 axpre-sup 11206 nnsub 12307 ublbneg 12972 xralrple 13243 supxrunb1 13357 expnlbnd2 14269 faclbnd4lem4 14331 hashbc 14488 cau3lem 15389 limsupbnd2 15515 climrlim2 15579 climshftlem 15606 subcn2 15627 isercoll 15700 climsup 15702 serf0 15713 iseralt 15717 incexclem 15868 sqrt2irr 16281 pclem 16871 prmpwdvds 16937 vdwlem10 17023 vdwlem13 17026 ramtlecl 17033 ramub 17046 ramcl 17062 iscatd 17717 clatleglb 18575 mndind 18853 grpinveu 19004 dfgrp3lem 19068 issubg4 19175 gexdvds 19616 sylow2alem2 19650 obselocv 21765 scmatscm 22534 tgcn 23275 tgcnp 23276 lmconst 23284 cncls2 23296 cncls 23297 cnntr 23298 lmss 23321 cnt0 23369 isnrm2 23381 isreg2 23400 cmpsublem 23422 cmpsub 23423 tgcmp 23424 islly2 23507 kgencn2 23580 txdis 23655 txlm 23671 kqt0lem 23759 isr0 23760 regr1lem2 23763 cmphaushmeo 23823 cfinufil 23951 ufilen 23953 flimopn 23998 fbflim2 24000 fclsnei 24042 fclsbas 24044 fclsrest 24047 flimfnfcls 24051 fclscmp 24053 ufilcmp 24055 isfcf 24057 fcfnei 24058 cnpfcf 24064 tsmsres 24167 tsmsxp 24178 blbas 24455 prdsbl 24519 metss 24536 metcnp3 24568 bndth 25003 lebnumii 25011 iscfil3 25320 iscmet3lem1 25338 equivcfil 25346 equivcau 25347 ellimc3 25928 lhop1 26067 dvfsumrlim 26086 ftc1lem6 26096 fta1g 26223 dgrco 26329 plydivex 26353 fta1 26364 vieta1 26368 ulmshftlem 26446 ulmcaulem 26451 mtest 26461 cxpcn3lem 26804 cxploglim 27035 ftalem3 27132 dchrisumlem3 27549 pntibnd 27651 ostth2lem2 27692 n0subs 28374 grpoinveu 30547 nmcvcn 30723 blocnilem 30832 ubthlem3 30900 htthlem 30945 spansni 31585 bra11 32136 lmxrge0 33912 mrsubff1 35498 msubff1 35540 fnemeet2 36349 fnejoin2 36351 fin2so 37593 lindsenlbs 37601 poimirlem29 37635 poimirlem30 37636 ftc1cnnc 37678 incsequz2 37735 geomcau 37745 caushft 37747 sstotbnd2 37760 isbnd2 37769 totbndbnd 37775 ismtybndlem 37792 heibor 37807 atlatle 39301 cvlcvr1 39320 ltrnid 40117 ltrneq2 40130 nadd1suc 43381 climinf 45561 ralbinrald 47071 snlindsntorlem 48315 |
Copyright terms: Public domain | W3C validator |