| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralnralall | Structured version Visualization version GIF version | ||
| Description: A contradiction concerning restricted generalization for a nonempty set implies anything. (Contributed by Alexander van der Vekens, 4-Sep-2018.) |
| Ref | Expression |
|---|---|
| ralnralall | ⊢ (𝐴 ≠ ∅ → ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜑) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 3092 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜑) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜑)) | |
| 2 | pm3.24 402 | . . . . 5 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) | |
| 3 | 2 | bifal 1557 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝜑) ↔ ⊥) |
| 4 | 3 | ralbii 3078 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜑) ↔ ∀𝑥 ∈ 𝐴 ⊥) |
| 5 | r19.3rzv 4446 | . . . 4 ⊢ (𝐴 ≠ ∅ → (⊥ ↔ ∀𝑥 ∈ 𝐴 ⊥)) | |
| 6 | falim 1558 | . . . 4 ⊢ (⊥ → 𝜓) | |
| 7 | 5, 6 | biimtrrdi 254 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 ⊥ → 𝜓)) |
| 8 | 4, 7 | biimtrid 242 | . 2 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜑) → 𝜓)) |
| 9 | 1, 8 | biimtrrid 243 | 1 ⊢ (𝐴 ≠ ∅ → ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜑) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ⊥wfal 1553 ≠ wne 2928 ∀wral 3047 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-ne 2929 df-ral 3048 df-dif 3900 df-nul 4281 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |