MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralnralall Structured version   Visualization version   GIF version

Theorem ralnralall 4458
Description: A contradiction concerning restricted generalization for a nonempty set implies anything. (Contributed by Alexander van der Vekens, 4-Sep-2018.)
Assertion
Ref Expression
ralnralall (𝐴 ≠ ∅ → ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 ¬ 𝜑) → 𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem ralnralall
StepHypRef Expression
1 r19.26 3170 . 2 (∀𝑥𝐴 (𝜑 ∧ ¬ 𝜑) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 ¬ 𝜑))
2 pm3.24 405 . . . . 5 ¬ (𝜑 ∧ ¬ 𝜑)
32bifal 1549 . . . 4 ((𝜑 ∧ ¬ 𝜑) ↔ ⊥)
43ralbii 3165 . . 3 (∀𝑥𝐴 (𝜑 ∧ ¬ 𝜑) ↔ ∀𝑥𝐴 ⊥)
5 r19.3rzv 4444 . . . 4 (𝐴 ≠ ∅ → (⊥ ↔ ∀𝑥𝐴 ⊥))
6 falim 1550 . . . 4 (⊥ → 𝜓)
75, 6syl6bir 256 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴 ⊥ → 𝜓))
84, 7syl5bi 244 . 2 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑 ∧ ¬ 𝜑) → 𝜓))
91, 8syl5bir 245 1 (𝐴 ≠ ∅ → ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 ¬ 𝜑) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wfal 1545  wne 3016  wral 3138  c0 4291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-11 2156  ax-12 2172  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-dif 3939  df-nul 4292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator