MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralnralall Structured version   Visualization version   GIF version

Theorem ralnralall 4446
Description: A contradiction concerning restricted generalization for a nonempty set implies anything. (Contributed by Alexander van der Vekens, 4-Sep-2018.)
Assertion
Ref Expression
ralnralall (𝐴 ≠ ∅ → ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 ¬ 𝜑) → 𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem ralnralall
StepHypRef Expression
1 r19.26 3094 . 2 (∀𝑥𝐴 (𝜑 ∧ ¬ 𝜑) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 ¬ 𝜑))
2 pm3.24 402 . . . . 5 ¬ (𝜑 ∧ ¬ 𝜑)
32bifal 1555 . . . 4 ((𝜑 ∧ ¬ 𝜑) ↔ ⊥)
43ralbii 3090 . . 3 (∀𝑥𝐴 (𝜑 ∧ ¬ 𝜑) ↔ ∀𝑥𝐴 ⊥)
5 r19.3rzv 4426 . . . 4 (𝐴 ≠ ∅ → (⊥ ↔ ∀𝑥𝐴 ⊥))
6 falim 1556 . . . 4 (⊥ → 𝜓)
75, 6syl6bir 253 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴 ⊥ → 𝜓))
84, 7syl5bi 241 . 2 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑 ∧ ¬ 𝜑) → 𝜓))
91, 8syl5bir 242 1 (𝐴 ≠ ∅ → ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 ¬ 𝜑) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wfal 1551  wne 2942  wral 3063  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-ne 2943  df-ral 3068  df-dif 3886  df-nul 4254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator