MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralsngOLD Structured version   Visualization version   GIF version

Theorem ralsngOLD 4701
Description: Obsolete version of ralsng 4697 as of 30-Sep-2024. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) (Proof shortened by AV, 7-Apr-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ralsngOLD.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ralsngOLD (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem ralsngOLD
StepHypRef Expression
1 nfv 1913 . 2 𝑥𝜓
2 ralsngOLD.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2ralsngf 4695 1 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wral 3067  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-sbc 3805  df-sn 4649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator