MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexsngOLD Structured version   Visualization version   GIF version

Theorem rexsngOLD 4627
Description: Obsolete version of rexsng 4623 as of 30-Sep-2024. (Contributed by NM, 29-Jan-2012.) (Proof shortened by AV, 7-Apr-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ralsngOLD.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rexsngOLD (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem rexsngOLD
StepHypRef Expression
1 nfv 1916 . 2 𝑥𝜓
2 ralsngOLD.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2rexsngf 4619 1 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wcel 2105  wrex 3070  {csn 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rex 3071  df-v 3443  df-sbc 3728  df-sn 4575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator