MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexsngOLD Structured version   Visualization version   GIF version

Theorem rexsngOLD 4611
Description: Obsolete version of rexsng 4607 as of 30-Sep-2024. (Contributed by NM, 29-Jan-2012.) (Proof shortened by AV, 7-Apr-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ralsngOLD.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rexsngOLD (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem rexsngOLD
StepHypRef Expression
1 nfv 1918 . 2 𝑥𝜓
2 ralsngOLD.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2rexsngf 4603 1 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  wrex 3064  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rex 3069  df-v 3424  df-sbc 3712  df-sn 4559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator