| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralsngf | Structured version Visualization version GIF version | ||
| Description: Restricted universal quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by AV, 3-Apr-2023.) |
| Ref | Expression |
|---|---|
| rexsngf.1 | ⊢ Ⅎ𝑥𝜓 |
| rexsngf.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralsngf | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsnsg 4670 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 2 | rexsngf.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | rexsngf.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | sbciegf 3827 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
| 5 | 1, 4 | bitrd 279 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ∀wral 3061 [wsbc 3788 {csn 4626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-v 3482 df-sbc 3789 df-sn 4627 |
| This theorem is referenced by: reusngf 4674 rexreusng 4679 ralprgf 4694 |
| Copyright terms: Public domain | W3C validator |