MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralsngf Structured version   Visualization version   GIF version

Theorem ralsngf 4607
Description: Restricted universal quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by AV, 3-Apr-2023.)
Hypotheses
Ref Expression
rexsngf.1 𝑥𝜓
rexsngf.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ralsngf (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem ralsngf
StepHypRef Expression
1 ralsnsg 4604 . 2 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑))
2 rexsngf.1 . . 3 𝑥𝜓
3 rexsngf.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
42, 3sbciegf 3755 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
51, 4bitrd 278 1 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wnf 1786  wcel 2106  wral 3064  [wsbc 3716  {csn 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-v 3434  df-sbc 3717  df-sn 4562
This theorem is referenced by:  reusngf  4608  ralsngOLD  4613  rexreusng  4615  ralprgf  4628
  Copyright terms: Public domain W3C validator