MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ralsng Structured version   Visualization version   GIF version

Theorem 2ralsng 4642
Description: Substitution expressed in terms of two quantifications over singletons. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
ralsng.1 (𝑥 = 𝐴 → (𝜑𝜓))
2ralsng.1 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
2ralsng ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝜑𝜒))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥   𝑦,𝐴   𝑥,𝐵,𝑦   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem 2ralsng
StepHypRef Expression
1 ralsng.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
21ralbidv 3175 . . 3 (𝑥 = 𝐴 → (∀𝑦 ∈ {𝐵}𝜑 ↔ ∀𝑦 ∈ {𝐵}𝜓))
32ralsng 4639 . 2 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝜑 ↔ ∀𝑦 ∈ {𝐵}𝜓))
4 2ralsng.1 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
54ralsng 4639 . 2 (𝐵𝑊 → (∀𝑦 ∈ {𝐵}𝜓𝜒))
63, 5sylan9bb 511 1 ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3065  {csn 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-v 3450  df-sn 4592
This theorem is referenced by:  mat1ghm  21848  mat1mhm  21849  f1resfz0f1d  33744  c0snmgmhm  46286  zrrnghm  46289
  Copyright terms: Public domain W3C validator