![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ralsng | Structured version Visualization version GIF version |
Description: Substitution expressed in terms of two quantifications over singletons. (Contributed by AV, 22-Dec-2019.) |
Ref | Expression |
---|---|
ralsng.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
2ralsng.1 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2ralsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝜑 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralsng.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | ralbidv 3167 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ {𝐵}𝜑 ↔ ∀𝑦 ∈ {𝐵}𝜓)) |
3 | 2 | ralsng 4409 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝜑 ↔ ∀𝑦 ∈ {𝐵}𝜓)) |
4 | 2ralsng.1 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
5 | 4 | ralsng 4409 | . 2 ⊢ (𝐵 ∈ 𝑊 → (∀𝑦 ∈ {𝐵}𝜓 ↔ 𝜒)) |
6 | 3, 5 | sylan9bb 506 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝜑 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3089 {csn 4368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-v 3387 df-sbc 3634 df-sn 4369 |
This theorem is referenced by: mat1ghm 20615 mat1mhm 20616 c0snmgmhm 42713 zrrnghm 42716 |
Copyright terms: Public domain | W3C validator |