| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralsng | Structured version Visualization version GIF version | ||
| Description: Substitution expressed in terms of two quantifications over singletons. (Contributed by AV, 22-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralsng.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| 2ralsng.1 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2ralsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝜑 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsng.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | ralbidv 3164 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ {𝐵}𝜑 ↔ ∀𝑦 ∈ {𝐵}𝜓)) |
| 3 | 2 | ralsng 4656 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝜑 ↔ ∀𝑦 ∈ {𝐵}𝜓)) |
| 4 | 2ralsng.1 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | ralsng 4656 | . 2 ⊢ (𝐵 ∈ 𝑊 → (∀𝑦 ∈ {𝐵}𝜓 ↔ 𝜒)) |
| 6 | 3, 5 | sylan9bb 509 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝜑 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-v 3466 df-sn 4607 |
| This theorem is referenced by: c0snmgmhm 20427 zrrnghm 20501 mat1ghm 22426 mat1mhm 22427 f1resfz0f1d 35141 |
| Copyright terms: Public domain | W3C validator |