| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralsng | Structured version Visualization version GIF version | ||
| Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) Avoid ax-10 2142, ax-12 2178. (Revised by GG, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| ralsng.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralsng | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3045 | . . 3 ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝜑)) | |
| 2 | velsn 4595 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 3 | 2 | imbi1i 349 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} → 𝜑) ↔ (𝑥 = 𝐴 → 𝜑)) |
| 4 | 3 | albii 1819 | . . 3 ⊢ (∀𝑥(𝑥 ∈ {𝐴} → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
| 5 | 1, 4 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
| 6 | elisset 2810 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 7 | ralsng.1 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 8 | 7 | pm5.74i 271 | . . . . . 6 ⊢ ((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓)) |
| 9 | 8 | albii 1819 | . . . . 5 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓)) |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓))) |
| 11 | 19.23v 1942 | . . . . 5 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓))) |
| 13 | pm5.5 361 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → ((∃𝑥 𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) | |
| 14 | 10, 12, 13 | 3bitrd 305 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| 15 | 6, 14 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| 16 | 5, 15 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 {csn 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3440 df-sn 4580 |
| This theorem is referenced by: rexsng 4630 2ralsng 4632 ralsn 4635 ralprg 4650 raltpg 4652 ralunsn 4848 iinxsng 5040 frirr 5599 posn 5709 frsn 5711 f1ounsn 7213 f12dfv 7214 naddov2 8604 naddunif 8618 naddasslem1 8619 naddasslem2 8620 ranksnb 9742 mgm1 18550 sgrp1 18621 mnd1 18671 grp1 18944 cntzsnval 19221 abl1 19763 srgbinomlem4 20132 ring1 20213 mat1dimmul 22379 ufileu 23822 eqscut3 27753 bdayn0p1 28281 istrkg3ld 28424 1hevtxdg0 29469 wlkp1lem8 29642 wwlksnext 29856 wwlksext2clwwlk 30019 dfconngr1 30150 1conngr 30156 frgr1v 30233 lindssn 33325 lbslsat 33588 bj-raldifsn 37073 lindsadd 37592 poimirlem26 37625 poimirlem27 37626 poimirlem31 37630 cantnfresb 43297 safesnsupfilb 43391 cfsetsnfsetf1 47044 zlidlring 48219 linds0 48451 snlindsntor 48457 lmod1 48478 |
| Copyright terms: Public domain | W3C validator |