| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralsng | Structured version Visualization version GIF version | ||
| Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) Avoid ax-10 2140, ax-12 2176. (Revised by GG, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| ralsng.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralsng | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3051 | . . 3 ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝜑)) | |
| 2 | velsn 4622 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 3 | 2 | imbi1i 349 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} → 𝜑) ↔ (𝑥 = 𝐴 → 𝜑)) |
| 4 | 3 | albii 1818 | . . 3 ⊢ (∀𝑥(𝑥 ∈ {𝐴} → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
| 5 | 1, 4 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
| 6 | elisset 2815 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 7 | ralsng.1 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 8 | 7 | pm5.74i 271 | . . . . . 6 ⊢ ((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓)) |
| 9 | 8 | albii 1818 | . . . . 5 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓)) |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓))) |
| 11 | 19.23v 1941 | . . . . 5 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓))) |
| 13 | pm5.5 361 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → ((∃𝑥 𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) | |
| 14 | 10, 12, 13 | 3bitrd 305 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| 15 | 6, 14 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| 16 | 5, 15 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∀wral 3050 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-v 3465 df-sn 4607 |
| This theorem is referenced by: rexsng 4656 2ralsng 4658 ralsn 4661 ralprg 4676 raltpg 4678 ralunsn 4874 iinxsng 5068 frirr 5641 posn 5751 frsn 5753 f1ounsn 7274 f12dfv 7275 naddov2 8699 naddunif 8713 naddasslem1 8714 naddasslem2 8715 ranksnb 9849 mgm1 18640 sgrp1 18711 mnd1 18761 grp1 19034 cntzsnval 19311 abl1 19852 srgbinomlem4 20194 ring1 20275 mat1dimmul 22430 ufileu 23873 istrkg3ld 28405 1hevtxdg0 29451 wlkp1lem8 29626 wwlksnext 29841 wwlksext2clwwlk 30004 dfconngr1 30135 1conngr 30141 frgr1v 30218 lindssn 33341 lbslsat 33602 bj-raldifsn 37060 lindsadd 37579 poimirlem26 37612 poimirlem27 37613 poimirlem31 37617 cantnfresb 43299 safesnsupfilb 43393 cfsetsnfsetf1 47029 zlidlring 48108 linds0 48340 snlindsntor 48346 lmod1 48367 |
| Copyright terms: Public domain | W3C validator |