Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralsng | Structured version Visualization version GIF version |
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) Avoid ax-10 2141, ax-12 2175. (Revised by Gino Giotto, 30-Sep-2024.) |
Ref | Expression |
---|---|
ralsng.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralsng | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3071 | . . 3 ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝜑)) | |
2 | velsn 4583 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
3 | 2 | imbi1i 350 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} → 𝜑) ↔ (𝑥 = 𝐴 → 𝜑)) |
4 | 3 | albii 1826 | . . 3 ⊢ (∀𝑥(𝑥 ∈ {𝐴} → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
5 | 1, 4 | bitri 274 | . 2 ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
6 | elisset 2822 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
7 | ralsng.1 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
8 | 7 | pm5.74i 270 | . . . . . 6 ⊢ ((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓)) |
9 | 8 | albii 1826 | . . . . 5 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓)) |
10 | 9 | a1i 11 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓))) |
11 | 19.23v 1949 | . . . . 5 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) | |
12 | 11 | a1i 11 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓))) |
13 | pm5.5 362 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → ((∃𝑥 𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) | |
14 | 10, 12, 13 | 3bitrd 305 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
15 | 6, 14 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
16 | 5, 15 | bitrid 282 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 = wceq 1542 ∃wex 1786 ∈ wcel 2110 ∀wral 3066 {csn 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-v 3433 df-sn 4568 |
This theorem is referenced by: rexsng 4616 2ralsng 4618 ralsn 4623 ralprg 4636 raltpg 4640 ralunsn 4831 iinxsng 5022 frirr 5567 posn 5673 frsn 5675 f12dfv 7142 ranksnb 9586 mgm1 18340 sgrp1 18382 mnd1 18424 grp1 18680 cntzsnval 18928 abl1 19465 srgbinomlem4 19777 ring1 19839 mat1dimmul 21623 ufileu 23068 istrkg3ld 26820 1hevtxdg0 27870 wlkp1lem8 28045 wwlksnext 28254 wwlksext2clwwlk 28417 dfconngr1 28548 1conngr 28554 frgr1v 28631 lindssn 31569 lbslsat 31695 naddov2 33830 bj-raldifsn 35267 lindsadd 35766 poimirlem26 35799 poimirlem27 35800 poimirlem31 35804 cfsetsnfsetf1 44521 zlidlring 45455 linds0 45775 snlindsntor 45781 lmod1 45802 |
Copyright terms: Public domain | W3C validator |