MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralsng Structured version   Visualization version   GIF version

Theorem ralsng 4629
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) Avoid ax-10 2142, ax-12 2178. (Revised by GG, 30-Sep-2024.)
Hypothesis
Ref Expression
ralsng.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ralsng (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem ralsng
StepHypRef Expression
1 df-ral 3045 . . 3 (∀𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝜑))
2 velsn 4595 . . . . 5 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
32imbi1i 349 . . . 4 ((𝑥 ∈ {𝐴} → 𝜑) ↔ (𝑥 = 𝐴𝜑))
43albii 1819 . . 3 (∀𝑥(𝑥 ∈ {𝐴} → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜑))
51, 4bitri 275 . 2 (∀𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑))
6 elisset 2810 . . 3 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
7 ralsng.1 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜓))
87pm5.74i 271 . . . . . 6 ((𝑥 = 𝐴𝜑) ↔ (𝑥 = 𝐴𝜓))
98albii 1819 . . . . 5 (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜓))
109a1i 11 . . . 4 (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜓)))
11 19.23v 1942 . . . . 5 (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓))
1211a1i 11 . . . 4 (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓)))
13 pm5.5 361 . . . 4 (∃𝑥 𝑥 = 𝐴 → ((∃𝑥 𝑥 = 𝐴𝜓) ↔ 𝜓))
1410, 12, 133bitrd 305 . . 3 (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
156, 14syl 17 . 2 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
165, 15bitrid 283 1 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wex 1779  wcel 2109  wral 3044  {csn 4579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-v 3440  df-sn 4580
This theorem is referenced by:  rexsng  4630  2ralsng  4632  ralsn  4635  ralprg  4650  raltpg  4652  ralunsn  4848  iinxsng  5040  frirr  5599  posn  5709  frsn  5711  f1ounsn  7213  f12dfv  7214  naddov2  8604  naddunif  8618  naddasslem1  8619  naddasslem2  8620  ranksnb  9742  mgm1  18550  sgrp1  18621  mnd1  18671  grp1  18944  cntzsnval  19221  abl1  19763  srgbinomlem4  20132  ring1  20213  mat1dimmul  22379  ufileu  23822  eqscut3  27753  bdayn0p1  28281  istrkg3ld  28424  1hevtxdg0  29469  wlkp1lem8  29642  wwlksnext  29856  wwlksext2clwwlk  30019  dfconngr1  30150  1conngr  30156  frgr1v  30233  lindssn  33325  lbslsat  33588  bj-raldifsn  37073  lindsadd  37592  poimirlem26  37625  poimirlem27  37626  poimirlem31  37630  cantnfresb  43297  safesnsupfilb  43391  cfsetsnfsetf1  47044  zlidlring  48219  linds0  48451  snlindsntor  48457  lmod1  48478
  Copyright terms: Public domain W3C validator