MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralsng Structured version   Visualization version   GIF version

Theorem ralsng 4676
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) Avoid ax-10 2137, ax-12 2171. (Revised by Gino Giotto, 30-Sep-2024.)
Hypothesis
Ref Expression
ralsng.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ralsng (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem ralsng
StepHypRef Expression
1 df-ral 3062 . . 3 (∀𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝜑))
2 velsn 4643 . . . . 5 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
32imbi1i 349 . . . 4 ((𝑥 ∈ {𝐴} → 𝜑) ↔ (𝑥 = 𝐴𝜑))
43albii 1821 . . 3 (∀𝑥(𝑥 ∈ {𝐴} → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜑))
51, 4bitri 274 . 2 (∀𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑))
6 elisset 2815 . . 3 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
7 ralsng.1 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜓))
87pm5.74i 270 . . . . . 6 ((𝑥 = 𝐴𝜑) ↔ (𝑥 = 𝐴𝜓))
98albii 1821 . . . . 5 (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜓))
109a1i 11 . . . 4 (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜓)))
11 19.23v 1945 . . . . 5 (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓))
1211a1i 11 . . . 4 (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓)))
13 pm5.5 361 . . . 4 (∃𝑥 𝑥 = 𝐴 → ((∃𝑥 𝑥 = 𝐴𝜓) ↔ 𝜓))
1410, 12, 133bitrd 304 . . 3 (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
156, 14syl 17 . 2 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
165, 15bitrid 282 1 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539   = wceq 1541  wex 1781  wcel 2106  wral 3061  {csn 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-v 3476  df-sn 4628
This theorem is referenced by:  rexsng  4677  2ralsng  4679  ralsn  4684  ralprg  4697  raltpg  4701  ralunsn  4893  iinxsng  5090  frirr  5652  posn  5759  frsn  5761  f12dfv  7267  naddov2  8674  naddunif  8688  naddasslem1  8689  naddasslem2  8690  ranksnb  9818  mgm1  18573  sgrp1  18616  mnd1  18663  grp1  18926  cntzsnval  19182  abl1  19728  srgbinomlem4  20045  ring1  20115  mat1dimmul  21969  ufileu  23414  istrkg3ld  27701  1hevtxdg0  28751  wlkp1lem8  28926  wwlksnext  29136  wwlksext2clwwlk  29299  dfconngr1  29430  1conngr  29436  frgr1v  29513  lindssn  32482  lbslsat  32689  bj-raldifsn  35969  lindsadd  36469  poimirlem26  36502  poimirlem27  36503  poimirlem31  36507  cantnfresb  42059  safesnsupfilb  42154  cfsetsnfsetf1  45755  zlidlring  46779  linds0  47099  snlindsntor  47105  lmod1  47126
  Copyright terms: Public domain W3C validator