| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralsng | Structured version Visualization version GIF version | ||
| Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) Avoid ax-10 2142, ax-12 2178. (Revised by GG, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| ralsng.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralsng | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3046 | . . 3 ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝜑)) | |
| 2 | velsn 4608 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 3 | 2 | imbi1i 349 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} → 𝜑) ↔ (𝑥 = 𝐴 → 𝜑)) |
| 4 | 3 | albii 1819 | . . 3 ⊢ (∀𝑥(𝑥 ∈ {𝐴} → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
| 5 | 1, 4 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
| 6 | elisset 2811 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 7 | ralsng.1 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 8 | 7 | pm5.74i 271 | . . . . . 6 ⊢ ((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓)) |
| 9 | 8 | albii 1819 | . . . . 5 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓)) |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓))) |
| 11 | 19.23v 1942 | . . . . 5 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓))) |
| 13 | pm5.5 361 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → ((∃𝑥 𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) | |
| 14 | 10, 12, 13 | 3bitrd 305 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| 15 | 6, 14 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| 16 | 5, 15 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3045 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-v 3452 df-sn 4593 |
| This theorem is referenced by: rexsng 4643 2ralsng 4645 ralsn 4648 ralprg 4663 raltpg 4665 ralunsn 4861 iinxsng 5055 frirr 5617 posn 5727 frsn 5729 f1ounsn 7250 f12dfv 7251 naddov2 8646 naddunif 8660 naddasslem1 8661 naddasslem2 8662 ranksnb 9787 mgm1 18592 sgrp1 18663 mnd1 18713 grp1 18986 cntzsnval 19263 abl1 19803 srgbinomlem4 20145 ring1 20226 mat1dimmul 22370 ufileu 23813 bdayn0p1 28265 istrkg3ld 28395 1hevtxdg0 29440 wlkp1lem8 29615 wwlksnext 29830 wwlksext2clwwlk 29993 dfconngr1 30124 1conngr 30130 frgr1v 30207 lindssn 33356 lbslsat 33619 bj-raldifsn 37095 lindsadd 37614 poimirlem26 37647 poimirlem27 37648 poimirlem31 37652 cantnfresb 43320 safesnsupfilb 43414 cfsetsnfsetf1 47064 zlidlring 48226 linds0 48458 snlindsntor 48464 lmod1 48485 |
| Copyright terms: Public domain | W3C validator |