MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralsng Structured version   Visualization version   GIF version

Theorem ralsng 4639
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) Avoid ax-10 2142, ax-12 2178. (Revised by GG, 30-Sep-2024.)
Hypothesis
Ref Expression
ralsng.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ralsng (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem ralsng
StepHypRef Expression
1 df-ral 3045 . . 3 (∀𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝜑))
2 velsn 4605 . . . . 5 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
32imbi1i 349 . . . 4 ((𝑥 ∈ {𝐴} → 𝜑) ↔ (𝑥 = 𝐴𝜑))
43albii 1819 . . 3 (∀𝑥(𝑥 ∈ {𝐴} → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜑))
51, 4bitri 275 . 2 (∀𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑))
6 elisset 2810 . . 3 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
7 ralsng.1 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜓))
87pm5.74i 271 . . . . . 6 ((𝑥 = 𝐴𝜑) ↔ (𝑥 = 𝐴𝜓))
98albii 1819 . . . . 5 (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜓))
109a1i 11 . . . 4 (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜓)))
11 19.23v 1942 . . . . 5 (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓))
1211a1i 11 . . . 4 (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓)))
13 pm5.5 361 . . . 4 (∃𝑥 𝑥 = 𝐴 → ((∃𝑥 𝑥 = 𝐴𝜓) ↔ 𝜓))
1410, 12, 133bitrd 305 . . 3 (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
156, 14syl 17 . 2 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
165, 15bitrid 283 1 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wex 1779  wcel 2109  wral 3044  {csn 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-v 3449  df-sn 4590
This theorem is referenced by:  rexsng  4640  2ralsng  4642  ralsn  4645  ralprg  4660  raltpg  4662  ralunsn  4858  iinxsng  5052  frirr  5614  posn  5724  frsn  5726  f1ounsn  7247  f12dfv  7248  naddov2  8643  naddunif  8657  naddasslem1  8658  naddasslem2  8659  ranksnb  9780  mgm1  18585  sgrp1  18656  mnd1  18706  grp1  18979  cntzsnval  19256  abl1  19796  srgbinomlem4  20138  ring1  20219  mat1dimmul  22363  ufileu  23806  bdayn0p1  28258  istrkg3ld  28388  1hevtxdg0  29433  wlkp1lem8  29608  wwlksnext  29823  wwlksext2clwwlk  29986  dfconngr1  30117  1conngr  30123  frgr1v  30200  lindssn  33349  lbslsat  33612  bj-raldifsn  37088  lindsadd  37607  poimirlem26  37640  poimirlem27  37641  poimirlem31  37645  cantnfresb  43313  safesnsupfilb  43407  cfsetsnfsetf1  47060  zlidlring  48222  linds0  48454  snlindsntor  48460  lmod1  48481
  Copyright terms: Public domain W3C validator