![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralsng | Structured version Visualization version GIF version |
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
ralsng.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralsng | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralsnsg 4407 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | ralsng.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | sbcieg 3666 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
4 | 1, 3 | bitrd 271 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 ∀wral 3089 [wsbc 3633 {csn 4368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-v 3387 df-sbc 3634 df-sn 4369 |
This theorem is referenced by: 2ralsng 4411 ralsn 4413 ralprg 4424 raltpg 4426 ralunsn 4614 iinxsng 4790 frirr 5289 posn 5392 frsn 5394 f12dfv 6757 ranksnb 8940 mgm1 17572 sgrp1 17608 mnd1 17646 grp1 17838 cntzsnval 18069 abl1 18584 srgbinomlem4 18859 ring1 18918 mat1dimmul 20608 ufileu 22051 istrkg3ld 25712 1hevtxdg0 26755 wlkp1lem8 26933 wwlksnext 27162 wwlksext2clwwlk 27373 wwlksext2clwwlkOLD 27374 dfconngr1 27532 1conngr 27538 frgr1v 27620 poimirlem26 33924 poimirlem27 33925 poimirlem31 33929 zlidlring 42727 linds0 43053 snlindsntor 43059 lmod1 43080 |
Copyright terms: Public domain | W3C validator |