Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralsng | Structured version Visualization version GIF version |
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) Avoid ax-10 2138, ax-12 2172. (Revised by Gino Giotto, 30-Sep-2024.) |
Ref | Expression |
---|---|
ralsng.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralsng | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3070 | . . 3 ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝜑)) | |
2 | velsn 4578 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
3 | 2 | imbi1i 350 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} → 𝜑) ↔ (𝑥 = 𝐴 → 𝜑)) |
4 | 3 | albii 1822 | . . 3 ⊢ (∀𝑥(𝑥 ∈ {𝐴} → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
5 | 1, 4 | bitri 274 | . 2 ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
6 | elisset 2821 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
7 | ralsng.1 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
8 | 7 | pm5.74i 270 | . . . . . 6 ⊢ ((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓)) |
9 | 8 | albii 1822 | . . . . 5 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓)) |
10 | 9 | a1i 11 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓))) |
11 | 19.23v 1946 | . . . . 5 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) | |
12 | 11 | a1i 11 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓))) |
13 | pm5.5 362 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → ((∃𝑥 𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) | |
14 | 10, 12, 13 | 3bitrd 305 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
15 | 6, 14 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
16 | 5, 15 | bitrid 282 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2107 ∀wral 3065 {csn 4562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-v 3435 df-sn 4563 |
This theorem is referenced by: rexsng 4611 2ralsng 4613 ralsn 4618 ralprg 4631 raltpg 4635 ralunsn 4826 iinxsng 5018 frirr 5567 posn 5673 frsn 5675 f12dfv 7154 ranksnb 9594 mgm1 18351 sgrp1 18393 mnd1 18435 grp1 18691 cntzsnval 18939 abl1 19476 srgbinomlem4 19788 ring1 19850 mat1dimmul 21634 ufileu 23079 istrkg3ld 26831 1hevtxdg0 27881 wlkp1lem8 28057 wwlksnext 28267 wwlksext2clwwlk 28430 dfconngr1 28561 1conngr 28567 frgr1v 28644 lindssn 31582 lbslsat 31708 naddov2 33843 bj-raldifsn 35280 lindsadd 35779 poimirlem26 35812 poimirlem27 35813 poimirlem31 35817 cfsetsnfsetf1 44564 zlidlring 45497 linds0 45817 snlindsntor 45823 lmod1 45844 |
Copyright terms: Public domain | W3C validator |