| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq1i | Structured version Visualization version GIF version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sseq1i | ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sseq1 3972 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 |
| This theorem is referenced by: eqsstrid 3985 eqsstri 3993 ssab 4027 rabss 4035 uniiunlem 4050 prssg 4783 sstp 4800 tpss 4801 iunssf 5008 iunss 5009 pwtr 5412 iunopeqop 5481 pwssun 5530 imadifssran 6124 cores2 6232 resssxp 6243 sspred 6283 dffun2OLDOLD 6523 sbcfg 6686 idref 7118 ovmptss 8072 fnsuppres 8170 frrlem7 8271 ordgt0ge1 8457 omopthlem1 8623 naddasslem1 8658 naddasslem2 8659 dmttrcl 9674 trcl 9681 rankbnd 9821 rankbnd2 9822 rankc1 9823 dfac12a 10102 fin23lem34 10299 axdc2lem 10401 alephval2 10525 indpi 10860 fsuppmapnn0fiublem 13955 prodeq1i 15882 0ram 16991 mreacs 17619 lsslinds 21740 2ndcctbss 23342 xkoinjcn 23574 restmetu 24458 xrlimcnp 26878 mptelee 28822 ausgrusgrb 29092 nbuhgr2vtx1edgblem 29278 nbgrsym 29290 isuvtx 29322 2wlkdlem6 29861 frcond1 30195 n4cyclfrgr 30220 shlesb1i 31315 mdsldmd1i 32260 csmdsymi 32263 tpssg 32466 lfuhgr 35105 2cycl2d 35126 dfon2lem3 35773 dfon2lem7 35777 cbvprodvw2 36235 filnetlem4 36369 ptrecube 37614 poimirlem30 37644 idinxpssinxp2 38306 cossssid2 38459 symrefref2 38554 redundeq1 38620 funALTVfun 38690 disjxrn 38738 omabs2 43321 undmrnresiss 43593 clcnvlem 43612 cnvtrrel 43659 brtrclfv2 43716 dfhe3 43764 dffrege76 43928 mnurndlem1 44270 ssabf 45094 rabssf 45113 imassmpt 45256 clnbgrsym 47838 sclnbgrelself 47848 setrec2 49684 |
| Copyright terms: Public domain | W3C validator |