![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sseq1i | Structured version Visualization version GIF version |
Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
sseq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sseq1i | ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sseq1 3820 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1653 ⊆ wss 3767 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-in 3774 df-ss 3781 |
This theorem is referenced by: eqsstri 3829 syl5eqss 3843 ssab 3866 rabss 3873 uniiunlem 3886 prssg 4536 sstp 4551 tpss 4552 iunss 4749 pwtr 5110 iunopeqop 5175 pwssun 5214 cores2 5865 sspred 5904 dffun2 6109 sbcfg 6252 idref 6637 ovmptss 7493 fnsuppres 7558 ordgt0ge1 7815 omopthlem1 7973 trcl 8852 rankbnd 8979 rankbnd2 8980 rankc1 8981 dfac12a 9256 fin23lem34 9454 axdc2lem 9556 alephval2 9680 indpi 10015 fsuppmapnn0fiublem 13040 0ram 16053 mreacs 16629 lsslinds 20491 2ndcctbss 21583 xkoinjcn 21815 restmetu 22699 xrlimcnp 25043 mptelee 26123 ausgrusgrb 26392 nbuhgr2vtx1edgblem 26580 nbgrsym 26596 nbgrsymOLD 26597 isuvtx 26632 isuvtxaOLD 26633 2wlkdlem6 27211 frcond1 27606 n4cyclfrgr 27631 shlesb1i 28761 mdsldmd1i 29706 csmdsymi 29709 dfon2lem3 32193 dfon2lem7 32197 trpredmintr 32234 filnetlem4 32879 ptrecube 33889 poimirlem30 33919 idinxpssinxp2 34574 cossssid2 34703 symrefref2 34794 redeq1 34855 undmrnresiss 38680 clcnvlem 38700 ss2iundf 38721 cnvtrrel 38732 brtrclfv2 38789 rp-imass 38834 dfhe3 38838 dffrege76 39002 iunssf 40009 ssabf 40026 rabssf 40047 imassmpt 40215 setrec2 43228 |
Copyright terms: Public domain | W3C validator |