Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sseq1i | Structured version Visualization version GIF version |
Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
sseq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sseq1i | ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sseq1 3951 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ⊆ wss 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-in 3899 df-ss 3909 |
This theorem is referenced by: eqsstri 3960 eqsstrid 3974 ssab 4000 rabss 4011 uniiunlem 4025 prssg 4758 sstp 4773 tpss 4774 iunssf 4981 iunss 4982 pwtr 5381 iunopeqop 5448 pwssun 5497 cores2 6177 resssxp 6188 sspred 6226 dffun2OLDOLD 6470 sbcfg 6628 idref 7050 ovmptss 7965 fnsuppres 8038 frrlem7 8139 ordgt0ge1 8354 omopthlem1 8520 dmttrcl 9527 trcl 9534 rankbnd 9674 rankbnd2 9675 rankc1 9676 dfac12a 9954 fin23lem34 10152 axdc2lem 10254 alephval2 10378 indpi 10713 fsuppmapnn0fiublem 13760 0ram 16770 mreacs 17416 lsslinds 21087 2ndcctbss 22655 xkoinjcn 22887 restmetu 23775 xrlimcnp 26167 mptelee 27312 ausgrusgrb 27584 nbuhgr2vtx1edgblem 27767 nbgrsym 27779 isuvtx 27811 2wlkdlem6 28345 frcond1 28679 n4cyclfrgr 28704 shlesb1i 29797 mdsldmd1i 30742 csmdsymi 30745 lfuhgr 33128 2cycl2d 33150 dfon2lem3 33810 dfon2lem7 33814 filnetlem4 34619 ptrecube 35825 poimirlem30 35855 idinxpssinxp2 36531 cossssid2 36682 symrefref2 36777 redundeq1 36843 funALTVfun 36912 disjxrn 36960 undmrnresiss 41425 clcnvlem 41444 cnvtrrel 41491 brtrclfv2 41548 dfhe3 41596 dffrege76 41760 mnurndlem1 42112 ssabf 42863 rabssf 42882 imassmpt 43031 setrec2 46645 |
Copyright terms: Public domain | W3C validator |