Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sseq1i | Structured version Visualization version GIF version |
Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
sseq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sseq1i | ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sseq1 3903 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1542 ⊆ wss 3844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-v 3401 df-in 3851 df-ss 3861 |
This theorem is referenced by: eqsstri 3912 eqsstrid 3926 ssab 3952 rabss 3962 uniiunlem 3976 prssg 4708 sstp 4723 tpss 4724 iunssf 4931 iunss 4932 pwtr 5312 iunopeqop 5379 pwssun 5426 cores2 6093 resssxp 6103 sspred 6138 dffun2 6350 sbcfg 6503 idref 6921 ovmptss 7817 fnsuppres 7889 ordgt0ge1 8156 omopthlem1 8316 trcl 9246 rankbnd 9373 rankbnd2 9374 rankc1 9375 dfac12a 9651 fin23lem34 9849 axdc2lem 9951 alephval2 10075 indpi 10410 fsuppmapnn0fiublem 13452 0ram 16459 mreacs 17035 lsslinds 20650 2ndcctbss 22209 xkoinjcn 22441 restmetu 23326 xrlimcnp 25709 mptelee 26844 ausgrusgrb 27113 nbuhgr2vtx1edgblem 27296 nbgrsym 27308 isuvtx 27340 2wlkdlem6 27872 frcond1 28206 n4cyclfrgr 28231 shlesb1i 29324 mdsldmd1i 30269 csmdsymi 30272 lfuhgr 32653 2cycl2d 32675 dfon2lem3 33338 dfon2lem7 33342 trpredmintr 33378 frrlem7 33452 filnetlem4 34216 ptrecube 35423 poimirlem30 35453 idinxpssinxp2 36099 cossssid2 36232 symrefref2 36323 redundeq1 36388 funALTVfun 36455 disjxrn 36501 undmrnresiss 40780 clcnvlem 40799 ss2iundf 40836 cnvtrrel 40847 brtrclfv2 40904 dfhe3 40952 dffrege76 41116 mnurndlem1 41464 ssabf 42211 rabssf 42229 imassmpt 42370 setrec2 45884 |
Copyright terms: Public domain | W3C validator |