| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq1i | Structured version Visualization version GIF version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sseq1i | ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sseq1 3984 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 |
| This theorem is referenced by: eqsstrid 3997 eqsstri 4005 ssab 4039 rabss 4047 uniiunlem 4062 prssg 4795 sstp 4812 tpss 4813 iunssf 5020 iunss 5021 pwtr 5427 iunopeqop 5496 pwssun 5545 imadifssran 6140 cores2 6248 resssxp 6259 sspred 6299 dffun2OLDOLD 6543 sbcfg 6704 idref 7136 ovmptss 8092 fnsuppres 8190 frrlem7 8291 ordgt0ge1 8505 omopthlem1 8671 naddasslem1 8706 naddasslem2 8707 dmttrcl 9735 trcl 9742 rankbnd 9882 rankbnd2 9883 rankc1 9884 dfac12a 10163 fin23lem34 10360 axdc2lem 10462 alephval2 10586 indpi 10921 fsuppmapnn0fiublem 14008 prodeq1i 15932 0ram 17040 mreacs 17670 lsslinds 21791 2ndcctbss 23393 xkoinjcn 23625 restmetu 24509 xrlimcnp 26930 mptelee 28874 ausgrusgrb 29144 nbuhgr2vtx1edgblem 29330 nbgrsym 29342 isuvtx 29374 2wlkdlem6 29913 frcond1 30247 n4cyclfrgr 30272 shlesb1i 31367 mdsldmd1i 32312 csmdsymi 32315 tpssg 32518 lfuhgr 35140 2cycl2d 35161 dfon2lem3 35803 dfon2lem7 35807 cbvprodvw2 36265 filnetlem4 36399 ptrecube 37644 poimirlem30 37674 idinxpssinxp2 38336 cossssid2 38486 symrefref2 38581 redundeq1 38647 funALTVfun 38716 disjxrn 38764 omabs2 43356 undmrnresiss 43628 clcnvlem 43647 cnvtrrel 43694 brtrclfv2 43751 dfhe3 43799 dffrege76 43963 mnurndlem1 44305 ssabf 45124 rabssf 45143 imassmpt 45286 clnbgrsym 47851 sclnbgrelself 47861 setrec2 49559 |
| Copyright terms: Public domain | W3C validator |