| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq1i | Structured version Visualization version GIF version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sseq1i | ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sseq1 3963 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3922 |
| This theorem is referenced by: eqsstrid 3976 eqsstri 3984 ssab 4018 rabss 4025 uniiunlem 4040 prssg 4773 sstp 4790 tpss 4791 iunssf 4996 iunss 4997 pwtr 5399 iunopeqop 5468 pwssun 5515 imadifssran 6104 cores2 6212 resssxp 6222 sspred 6262 sbcfg 6654 idref 7084 ovmptss 8033 fnsuppres 8131 frrlem7 8232 ordgt0ge1 8418 omopthlem1 8584 naddasslem1 8619 naddasslem2 8620 dmttrcl 9636 trcl 9643 rankbnd 9783 rankbnd2 9784 rankc1 9785 dfac12a 10062 fin23lem34 10259 axdc2lem 10361 alephval2 10485 indpi 10820 fsuppmapnn0fiublem 13915 prodeq1i 15841 0ram 16950 mreacs 17582 lsslinds 21756 2ndcctbss 23358 xkoinjcn 23590 restmetu 24474 xrlimcnp 26894 mptelee 28858 ausgrusgrb 29128 nbuhgr2vtx1edgblem 29314 nbgrsym 29326 isuvtx 29358 2wlkdlem6 29894 frcond1 30228 n4cyclfrgr 30253 shlesb1i 31348 mdsldmd1i 32293 csmdsymi 32296 tpssg 32499 lfuhgr 35090 2cycl2d 35111 dfon2lem3 35758 dfon2lem7 35762 cbvprodvw2 36220 filnetlem4 36354 ptrecube 37599 poimirlem30 37629 idinxpssinxp2 38291 cossssid2 38444 symrefref2 38539 redundeq1 38605 funALTVfun 38675 disjxrn 38723 omabs2 43305 undmrnresiss 43577 clcnvlem 43596 cnvtrrel 43643 brtrclfv2 43700 dfhe3 43748 dffrege76 43912 mnurndlem1 44254 ssabf 45078 rabssf 45097 imassmpt 45240 clnbgrsym 47823 sclnbgrelself 47833 setrec2 49681 |
| Copyright terms: Public domain | W3C validator |