Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sseq1i | Structured version Visualization version GIF version |
Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
sseq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sseq1i | ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sseq1 3950 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ⊆ wss 3891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-ss 3908 |
This theorem is referenced by: eqsstri 3959 eqsstrid 3973 ssab 3999 rabss 4009 uniiunlem 4023 prssg 4757 sstp 4772 tpss 4773 iunssf 4978 iunss 4979 pwtr 5370 iunopeqop 5437 pwssun 5484 cores2 6160 resssxp 6170 sspred 6208 dffun2 6440 sbcfg 6594 idref 7012 ovmptss 7917 fnsuppres 7991 frrlem7 8092 ordgt0ge1 8303 omopthlem1 8463 dmttrcl 9440 trpredmintr 9461 trcl 9469 rankbnd 9610 rankbnd2 9611 rankc1 9612 dfac12a 9888 fin23lem34 10086 axdc2lem 10188 alephval2 10312 indpi 10647 fsuppmapnn0fiublem 13691 0ram 16702 mreacs 17348 lsslinds 21019 2ndcctbss 22587 xkoinjcn 22819 restmetu 23707 xrlimcnp 26099 mptelee 27244 ausgrusgrb 27516 nbuhgr2vtx1edgblem 27699 nbgrsym 27711 isuvtx 27743 2wlkdlem6 28275 frcond1 28609 n4cyclfrgr 28634 shlesb1i 29727 mdsldmd1i 30672 csmdsymi 30675 lfuhgr 33058 2cycl2d 33080 dfon2lem3 33740 dfon2lem7 33744 filnetlem4 34549 ptrecube 35756 poimirlem30 35786 idinxpssinxp2 36432 cossssid2 36565 symrefref2 36656 redundeq1 36721 funALTVfun 36788 disjxrn 36834 undmrnresiss 41165 clcnvlem 41184 ss2iundf 41220 cnvtrrel 41231 brtrclfv2 41288 dfhe3 41336 dffrege76 41500 mnurndlem1 41852 ssabf 42603 rabssf 42621 imassmpt 42763 setrec2 46353 |
Copyright terms: Public domain | W3C validator |