| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq1i | Structured version Visualization version GIF version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sseq1i | ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sseq1 3956 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ss 3915 |
| This theorem is referenced by: eqsstrid 3969 eqsstri 3977 ssab 4012 rabss 4019 uniiunlem 4036 prssg 4770 sstp 4787 tpss 4788 iunssfOLD 4994 iunssOLD 4996 pwtr 5395 iunopeqop 5464 pwssun 5511 imadifssran 6103 cores2 6212 resssxp 6222 sspred 6262 sbcfg 6654 idref 7085 ovmptss 8029 fnsuppres 8127 frrlem7 8228 ordgt0ge1 8414 omopthlem1 8580 naddasslem1 8615 naddasslem2 8616 dmttrcl 9618 trcl 9625 rankbnd 9768 rankbnd2 9769 rankc1 9770 dfac12a 10047 fin23lem34 10244 alephval2 10470 indpi 10805 fsuppmapnn0fiublem 13899 prodeq1i 15825 0ram 16934 mreacs 17566 lsslinds 21770 2ndcctbss 23371 xkoinjcn 23603 restmetu 24486 xrlimcnp 26906 mpteleeOLD 28875 ausgrusgrb 29145 nbuhgr2vtx1edgblem 29331 nbgrsym 29343 isuvtx 29375 2wlkdlem6 29911 frcond1 30248 n4cyclfrgr 30273 shlesb1i 31368 mdsldmd1i 32313 csmdsymi 32316 tpssg 32519 lfuhgr 35183 2cycl2d 35204 dfon2lem3 35848 dfon2lem7 35852 cbvprodvw2 36312 filnetlem4 36446 ptrecube 37680 poimirlem30 37710 idinxpssinxp2 38376 cossssid2 38590 symrefref2 38679 redundeq1 38745 funALTVfun 38816 disjxrn 38864 omabs2 43449 undmrnresiss 43721 clcnvlem 43740 cnvtrrel 43787 brtrclfv2 43844 dfhe3 43892 dffrege76 44056 mnurndlem1 44398 ssabf 45221 rabssf 45240 imassmpt 45383 clnbgrsym 47962 sclnbgrelself 47972 setrec2 49820 |
| Copyright terms: Public domain | W3C validator |