![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sseq1i | Structured version Visualization version GIF version |
Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
sseq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sseq1i | ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sseq1 4034 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 |
This theorem is referenced by: eqsstri 4043 eqsstrid 4057 ssab 4087 rabss 4095 uniiunlem 4110 prssg 4844 sstp 4861 tpss 4862 iunssf 5067 iunss 5068 pwtr 5472 iunopeqop 5540 pwssun 5590 cores2 6290 resssxp 6301 sspred 6341 dffun2OLDOLD 6585 sbcfg 6745 idref 7180 ovmptss 8134 fnsuppres 8232 frrlem7 8333 ordgt0ge1 8549 omopthlem1 8715 naddasslem1 8750 naddasslem2 8751 dmttrcl 9790 trcl 9797 rankbnd 9937 rankbnd2 9938 rankc1 9939 dfac12a 10218 fin23lem34 10415 axdc2lem 10517 alephval2 10641 indpi 10976 fsuppmapnn0fiublem 14041 prodeq1i 15964 0ram 17067 mreacs 17716 lsslinds 21874 2ndcctbss 23484 xkoinjcn 23716 restmetu 24604 xrlimcnp 27029 mptelee 28928 ausgrusgrb 29200 nbuhgr2vtx1edgblem 29386 nbgrsym 29398 isuvtx 29430 2wlkdlem6 29964 frcond1 30298 n4cyclfrgr 30323 shlesb1i 31418 mdsldmd1i 32363 csmdsymi 32366 lfuhgr 35085 2cycl2d 35107 dfon2lem3 35749 dfon2lem7 35753 cbvprodvw2 36213 filnetlem4 36347 ptrecube 37580 poimirlem30 37610 idinxpssinxp2 38274 cossssid2 38424 symrefref2 38519 redundeq1 38585 funALTVfun 38654 disjxrn 38702 omabs2 43294 undmrnresiss 43566 clcnvlem 43585 cnvtrrel 43632 brtrclfv2 43689 dfhe3 43737 dffrege76 43901 mnurndlem1 44250 ssabf 45002 rabssf 45021 imassmpt 45172 clnbgrsym 47710 sclnbgrelself 47720 setrec2 48787 |
Copyright terms: Public domain | W3C validator |