| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq1i | Structured version Visualization version GIF version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sseq1i | ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sseq1 3960 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3919 |
| This theorem is referenced by: eqsstrid 3973 eqsstri 3981 ssab 4015 rabss 4022 uniiunlem 4037 prssg 4771 sstp 4788 tpss 4789 iunssf 4993 iunss 4994 pwtr 5393 iunopeqop 5461 pwssun 5508 imadifssran 6098 cores2 6207 resssxp 6217 sspred 6257 sbcfg 6649 idref 7079 ovmptss 8023 fnsuppres 8121 frrlem7 8222 ordgt0ge1 8408 omopthlem1 8574 naddasslem1 8609 naddasslem2 8610 dmttrcl 9611 trcl 9618 rankbnd 9758 rankbnd2 9759 rankc1 9760 dfac12a 10037 fin23lem34 10234 axdc2lem 10336 alephval2 10460 indpi 10795 fsuppmapnn0fiublem 13894 prodeq1i 15820 0ram 16929 mreacs 17561 lsslinds 21766 2ndcctbss 23368 xkoinjcn 23600 restmetu 24483 xrlimcnp 26903 mptelee 28871 ausgrusgrb 29141 nbuhgr2vtx1edgblem 29327 nbgrsym 29339 isuvtx 29371 2wlkdlem6 29907 frcond1 30241 n4cyclfrgr 30266 shlesb1i 31361 mdsldmd1i 32306 csmdsymi 32309 tpssg 32512 lfuhgr 35150 2cycl2d 35171 dfon2lem3 35818 dfon2lem7 35822 cbvprodvw2 36280 filnetlem4 36414 ptrecube 37659 poimirlem30 37689 idinxpssinxp2 38351 cossssid2 38504 symrefref2 38599 redundeq1 38665 funALTVfun 38735 disjxrn 38783 omabs2 43364 undmrnresiss 43636 clcnvlem 43655 cnvtrrel 43702 brtrclfv2 43759 dfhe3 43807 dffrege76 43971 mnurndlem1 44313 ssabf 45136 rabssf 45155 imassmpt 45298 clnbgrsym 47868 sclnbgrelself 47878 setrec2 49726 |
| Copyright terms: Public domain | W3C validator |