| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelsredund3 | Structured version Visualization version GIF version | ||
| Description: The naive version of the class of reflexive relations {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥} is redundant with respect to the class of reflexive relations (see dfrefrels3 38629) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| Ref | Expression |
|---|---|
| refrelsredund3 | ⊢ {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} Redund 〈 RefRels , EqvRels 〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refrelsredund2 38752 | . 2 ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉 | |
| 2 | idrefALT 6066 | . . . 4 ⊢ (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥) | |
| 3 | 2 | rabbii 3401 | . . 3 ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} |
| 4 | 3 | redundeq1 38748 | . 2 ⊢ ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉 ↔ {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} Redund 〈 RefRels , EqvRels 〉) |
| 5 | 1, 4 | mpbi 230 | 1 ⊢ {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} Redund 〈 RefRels , EqvRels 〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wral 3048 {crab 3396 ⊆ wss 3898 class class class wbr 5095 I cid 5515 dom cdm 5621 ↾ cres 5623 Rels crels 38247 RefRels crefrels 38250 EqvRels ceqvrels 38261 Redund wredund 38266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-rels 38487 df-ssr 38613 df-refs 38625 df-refrels 38626 df-syms 38657 df-symrels 38658 df-eqvrels 38703 df-redund 38743 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |