![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelsredund3 | Structured version Visualization version GIF version |
Description: The naive version of the class of reflexive relations {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥} is redundant with respect to the class of reflexive relations (see dfrefrels3 37372) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.) |
Ref | Expression |
---|---|
refrelsredund3 | ⊢ {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} Redund ⟨ RefRels , EqvRels ⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refrelsredund2 37491 | . 2 ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , EqvRels ⟩ | |
2 | idrefALT 6109 | . . . 4 ⊢ (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥) | |
3 | 2 | rabbii 3438 | . . 3 ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} |
4 | 3 | redundeq1 37487 | . 2 ⊢ ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , EqvRels ⟩ ↔ {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} Redund ⟨ RefRels , EqvRels ⟩) |
5 | 1, 4 | mpbi 229 | 1 ⊢ {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} Redund ⟨ RefRels , EqvRels ⟩ |
Colors of variables: wff setvar class |
Syntax hints: ∀wral 3061 {crab 3432 ⊆ wss 3947 class class class wbr 5147 I cid 5572 dom cdm 5675 ↾ cres 5677 Rels crels 37033 RefRels crefrels 37036 EqvRels ceqvrels 37047 Redund wredund 37052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-rels 37343 df-ssr 37356 df-refs 37368 df-refrels 37369 df-syms 37400 df-symrels 37401 df-eqvrels 37442 df-redund 37482 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |