Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelsredund3 Structured version   Visualization version   GIF version

Theorem refrelsredund3 38590
Description: The naive version of the class of reflexive relations {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥} is redundant with respect to the class of reflexive relations (see dfrefrels3 38470) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.)
Assertion
Ref Expression
refrelsredund3 {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} Redund ⟨ RefRels , EqvRels ⟩
Distinct variable group:   𝑥,𝑟

Proof of Theorem refrelsredund3
StepHypRef Expression
1 refrelsredund2 38589 . 2 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , EqvRels ⟩
2 idrefALT 6143 . . . 4 (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥)
32rabbii 3449 . . 3 {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥}
43redundeq1 38585 . 2 ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund ⟨ RefRels , EqvRels ⟩ ↔ {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} Redund ⟨ RefRels , EqvRels ⟩)
51, 4mpbi 230 1 {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} Redund ⟨ RefRels , EqvRels ⟩
Colors of variables: wff setvar class
Syntax hints:  wral 3067  {crab 3443  wss 3976   class class class wbr 5166   I cid 5592  dom cdm 5700  cres 5702   Rels crels 38137   RefRels crefrels 38140   EqvRels ceqvrels 38151   Redund wredund 38156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-rels 38441  df-ssr 38454  df-refs 38466  df-refrels 38467  df-syms 38498  df-symrels 38499  df-eqvrels 38540  df-redund 38580
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator