| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelsredund3 | Structured version Visualization version GIF version | ||
| Description: The naive version of the class of reflexive relations {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥} is redundant with respect to the class of reflexive relations (see dfrefrels3 38557) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| Ref | Expression |
|---|---|
| refrelsredund3 | ⊢ {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} Redund 〈 RefRels , EqvRels 〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refrelsredund2 38676 | . 2 ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉 | |
| 2 | idrefALT 6060 | . . . 4 ⊢ (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥) | |
| 3 | 2 | rabbii 3400 | . . 3 ⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} |
| 4 | 3 | redundeq1 38672 | . 2 ⊢ ({𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉 ↔ {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} Redund 〈 RefRels , EqvRels 〉) |
| 5 | 1, 4 | mpbi 230 | 1 ⊢ {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} Redund 〈 RefRels , EqvRels 〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wral 3047 {crab 3395 ⊆ wss 3902 class class class wbr 5091 I cid 5510 dom cdm 5616 ↾ cres 5618 Rels crels 38223 RefRels crefrels 38226 EqvRels ceqvrels 38237 Redund wredund 38242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-rels 38528 df-ssr 38541 df-refs 38553 df-refrels 38554 df-syms 38585 df-symrels 38586 df-eqvrels 38627 df-redund 38667 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |