Step | Hyp | Ref
| Expression |
1 | | difexg 5246 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝑥) ∈ V) |
2 | 1 | ralrimivw 3108 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ 𝒫 𝐴(𝐴 ∖ 𝑥) ∈ V) |
3 | | compss.a |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) |
4 | 3 | fnmpt 6557 |
. . . 4
⊢
(∀𝑥 ∈
𝒫 𝐴(𝐴 ∖ 𝑥) ∈ V → 𝐹 Fn 𝒫 𝐴) |
5 | 2, 4 | syl 17 |
. . 3
⊢ (𝐴 ∈ 𝑉 → 𝐹 Fn 𝒫 𝐴) |
6 | 3 | compsscnv 10058 |
. . . . 5
⊢ ◡𝐹 = 𝐹 |
7 | 6 | fneq1i 6514 |
. . . 4
⊢ (◡𝐹 Fn 𝒫 𝐴 ↔ 𝐹 Fn 𝒫 𝐴) |
8 | 5, 7 | sylibr 233 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ◡𝐹 Fn 𝒫 𝐴) |
9 | | dff1o4 6708 |
. . 3
⊢ (𝐹:𝒫 𝐴–1-1-onto→𝒫 𝐴 ↔ (𝐹 Fn 𝒫 𝐴 ∧ ◡𝐹 Fn 𝒫 𝐴)) |
10 | 5, 8, 9 | sylanbrc 582 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐹:𝒫 𝐴–1-1-onto→𝒫 𝐴) |
11 | | elpwi 4539 |
. . . . . . . . 9
⊢ (𝑏 ∈ 𝒫 𝐴 → 𝑏 ⊆ 𝐴) |
12 | 11 | ad2antll 725 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → 𝑏 ⊆ 𝐴) |
13 | 3 | isf34lem1 10059 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑏 ⊆ 𝐴) → (𝐹‘𝑏) = (𝐴 ∖ 𝑏)) |
14 | 12, 13 | syldan 590 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝐹‘𝑏) = (𝐴 ∖ 𝑏)) |
15 | | elpwi 4539 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝒫 𝐴 → 𝑎 ⊆ 𝐴) |
16 | 15 | ad2antrl 724 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → 𝑎 ⊆ 𝐴) |
17 | 3 | isf34lem1 10059 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑎 ⊆ 𝐴) → (𝐹‘𝑎) = (𝐴 ∖ 𝑎)) |
18 | 16, 17 | syldan 590 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝐹‘𝑎) = (𝐴 ∖ 𝑎)) |
19 | 14, 18 | psseq12d 4025 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → ((𝐹‘𝑏) ⊊ (𝐹‘𝑎) ↔ (𝐴 ∖ 𝑏) ⊊ (𝐴 ∖ 𝑎))) |
20 | | difss 4062 |
. . . . . . 7
⊢ (𝐴 ∖ 𝑎) ⊆ 𝐴 |
21 | | pssdifcom1 4417 |
. . . . . . 7
⊢ ((𝑏 ⊆ 𝐴 ∧ (𝐴 ∖ 𝑎) ⊆ 𝐴) → ((𝐴 ∖ 𝑏) ⊊ (𝐴 ∖ 𝑎) ↔ (𝐴 ∖ (𝐴 ∖ 𝑎)) ⊊ 𝑏)) |
22 | 12, 20, 21 | sylancl 585 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → ((𝐴 ∖ 𝑏) ⊊ (𝐴 ∖ 𝑎) ↔ (𝐴 ∖ (𝐴 ∖ 𝑎)) ⊊ 𝑏)) |
23 | | dfss4 4189 |
. . . . . . . 8
⊢ (𝑎 ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ 𝑎)) = 𝑎) |
24 | 16, 23 | sylib 217 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝐴 ∖ (𝐴 ∖ 𝑎)) = 𝑎) |
25 | 24 | psseq1d 4023 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → ((𝐴 ∖ (𝐴 ∖ 𝑎)) ⊊ 𝑏 ↔ 𝑎 ⊊ 𝑏)) |
26 | 19, 22, 25 | 3bitrrd 305 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝑎 ⊊ 𝑏 ↔ (𝐹‘𝑏) ⊊ (𝐹‘𝑎))) |
27 | | vex 3426 |
. . . . . 6
⊢ 𝑏 ∈ V |
28 | 27 | brrpss 7557 |
. . . . 5
⊢ (𝑎 [⊊] 𝑏 ↔ 𝑎 ⊊ 𝑏) |
29 | | fvex 6769 |
. . . . . 6
⊢ (𝐹‘𝑎) ∈ V |
30 | 29 | brrpss 7557 |
. . . . 5
⊢ ((𝐹‘𝑏) [⊊] (𝐹‘𝑎) ↔ (𝐹‘𝑏) ⊊ (𝐹‘𝑎)) |
31 | 26, 28, 30 | 3bitr4g 313 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝑎 [⊊] 𝑏 ↔ (𝐹‘𝑏) [⊊] (𝐹‘𝑎))) |
32 | | relrpss 7555 |
. . . . 5
⊢ Rel
[⊊] |
33 | 32 | relbrcnv 6004 |
. . . 4
⊢ ((𝐹‘𝑎)◡
[⊊] (𝐹‘𝑏) ↔ (𝐹‘𝑏) [⊊] (𝐹‘𝑎)) |
34 | 31, 33 | bitr4di 288 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝑎 [⊊] 𝑏 ↔ (𝐹‘𝑎)◡
[⊊] (𝐹‘𝑏))) |
35 | 34 | ralrimivva 3114 |
. 2
⊢ (𝐴 ∈ 𝑉 → ∀𝑎 ∈ 𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝑎 [⊊] 𝑏 ↔ (𝐹‘𝑎)◡
[⊊] (𝐹‘𝑏))) |
36 | | df-isom 6427 |
. 2
⊢ (𝐹 Isom [⊊] , ◡ [⊊] (𝒫 𝐴, 𝒫 𝐴) ↔ (𝐹:𝒫 𝐴–1-1-onto→𝒫 𝐴 ∧ ∀𝑎 ∈ 𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝑎 [⊊] 𝑏 ↔ (𝐹‘𝑎)◡
[⊊] (𝐹‘𝑏)))) |
37 | 10, 35, 36 | sylanbrc 582 |
1
⊢ (𝐴 ∈ 𝑉 → 𝐹 Isom [⊊] , ◡ [⊊] (𝒫 𝐴, 𝒫 𝐴)) |