MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  compssiso Structured version   Visualization version   GIF version

Theorem compssiso 9834
Description: Complementation is an antiautomorphism on power set lattices. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
compssiso (𝐴𝑉𝐹 Isom [] , [] (𝒫 𝐴, 𝒫 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem compssiso
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difexg 5197 . . . . 5 (𝐴𝑉 → (𝐴𝑥) ∈ V)
21ralrimivw 3114 . . . 4 (𝐴𝑉 → ∀𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ V)
3 compss.a . . . . 5 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
43fnmpt 6471 . . . 4 (∀𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ V → 𝐹 Fn 𝒫 𝐴)
52, 4syl 17 . . 3 (𝐴𝑉𝐹 Fn 𝒫 𝐴)
63compsscnv 9831 . . . . 5 𝐹 = 𝐹
76fneq1i 6431 . . . 4 (𝐹 Fn 𝒫 𝐴𝐹 Fn 𝒫 𝐴)
85, 7sylibr 237 . . 3 (𝐴𝑉𝐹 Fn 𝒫 𝐴)
9 dff1o4 6610 . . 3 (𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴 ↔ (𝐹 Fn 𝒫 𝐴𝐹 Fn 𝒫 𝐴))
105, 8, 9sylanbrc 586 . 2 (𝐴𝑉𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴)
11 elpwi 4503 . . . . . . . . 9 (𝑏 ∈ 𝒫 𝐴𝑏𝐴)
1211ad2antll 728 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → 𝑏𝐴)
133isf34lem1 9832 . . . . . . . 8 ((𝐴𝑉𝑏𝐴) → (𝐹𝑏) = (𝐴𝑏))
1412, 13syldan 594 . . . . . . 7 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → (𝐹𝑏) = (𝐴𝑏))
15 elpwi 4503 . . . . . . . . 9 (𝑎 ∈ 𝒫 𝐴𝑎𝐴)
1615ad2antrl 727 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → 𝑎𝐴)
173isf34lem1 9832 . . . . . . . 8 ((𝐴𝑉𝑎𝐴) → (𝐹𝑎) = (𝐴𝑎))
1816, 17syldan 594 . . . . . . 7 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → (𝐹𝑎) = (𝐴𝑎))
1914, 18psseq12d 4000 . . . . . 6 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → ((𝐹𝑏) ⊊ (𝐹𝑎) ↔ (𝐴𝑏) ⊊ (𝐴𝑎)))
20 difss 4037 . . . . . . 7 (𝐴𝑎) ⊆ 𝐴
21 pssdifcom1 4383 . . . . . . 7 ((𝑏𝐴 ∧ (𝐴𝑎) ⊆ 𝐴) → ((𝐴𝑏) ⊊ (𝐴𝑎) ↔ (𝐴 ∖ (𝐴𝑎)) ⊊ 𝑏))
2212, 20, 21sylancl 589 . . . . . 6 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → ((𝐴𝑏) ⊊ (𝐴𝑎) ↔ (𝐴 ∖ (𝐴𝑎)) ⊊ 𝑏))
23 dfss4 4163 . . . . . . . 8 (𝑎𝐴 ↔ (𝐴 ∖ (𝐴𝑎)) = 𝑎)
2416, 23sylib 221 . . . . . . 7 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → (𝐴 ∖ (𝐴𝑎)) = 𝑎)
2524psseq1d 3998 . . . . . 6 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → ((𝐴 ∖ (𝐴𝑎)) ⊊ 𝑏𝑎𝑏))
2619, 22, 253bitrrd 309 . . . . 5 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → (𝑎𝑏 ↔ (𝐹𝑏) ⊊ (𝐹𝑎)))
27 vex 3413 . . . . . 6 𝑏 ∈ V
2827brrpss 7450 . . . . 5 (𝑎 [] 𝑏𝑎𝑏)
29 fvex 6671 . . . . . 6 (𝐹𝑎) ∈ V
3029brrpss 7450 . . . . 5 ((𝐹𝑏) [] (𝐹𝑎) ↔ (𝐹𝑏) ⊊ (𝐹𝑎))
3126, 28, 303bitr4g 317 . . . 4 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → (𝑎 [] 𝑏 ↔ (𝐹𝑏) [] (𝐹𝑎)))
32 relrpss 7448 . . . . 5 Rel []
3332relbrcnv 5942 . . . 4 ((𝐹𝑎) [] (𝐹𝑏) ↔ (𝐹𝑏) [] (𝐹𝑎))
3431, 33bitr4di 292 . . 3 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → (𝑎 [] 𝑏 ↔ (𝐹𝑎) [] (𝐹𝑏)))
3534ralrimivva 3120 . 2 (𝐴𝑉 → ∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴(𝑎 [] 𝑏 ↔ (𝐹𝑎) [] (𝐹𝑏)))
36 df-isom 6344 . 2 (𝐹 Isom [] , [] (𝒫 𝐴, 𝒫 𝐴) ↔ (𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴 ∧ ∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴(𝑎 [] 𝑏 ↔ (𝐹𝑎) [] (𝐹𝑏))))
3710, 35, 36sylanbrc 586 1 (𝐴𝑉𝐹 Isom [] , [] (𝒫 𝐴, 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3070  Vcvv 3409  cdif 3855  wss 3858  wpss 3859  𝒫 cpw 4494   class class class wbr 5032  cmpt 5112  ccnv 5523   Fn wfn 6330  1-1-ontowf1o 6334  cfv 6335   Isom wiso 6336   [] crpss 7446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-rpss 7447
This theorem is referenced by:  isf34lem3  9835  isf34lem5  9838  isfin1-4  9847
  Copyright terms: Public domain W3C validator