MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  compssiso Structured version   Visualization version   GIF version

Theorem compssiso 10265
Description: Complementation is an antiautomorphism on power set lattices. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
compssiso (𝐴𝑉𝐹 Isom [] , [] (𝒫 𝐴, 𝒫 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem compssiso
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difexg 5267 . . . . 5 (𝐴𝑉 → (𝐴𝑥) ∈ V)
21ralrimivw 3128 . . . 4 (𝐴𝑉 → ∀𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ V)
3 compss.a . . . . 5 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
43fnmpt 6621 . . . 4 (∀𝑥 ∈ 𝒫 𝐴(𝐴𝑥) ∈ V → 𝐹 Fn 𝒫 𝐴)
52, 4syl 17 . . 3 (𝐴𝑉𝐹 Fn 𝒫 𝐴)
63compsscnv 10262 . . . . 5 𝐹 = 𝐹
76fneq1i 6578 . . . 4 (𝐹 Fn 𝒫 𝐴𝐹 Fn 𝒫 𝐴)
85, 7sylibr 234 . . 3 (𝐴𝑉𝐹 Fn 𝒫 𝐴)
9 dff1o4 6771 . . 3 (𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴 ↔ (𝐹 Fn 𝒫 𝐴𝐹 Fn 𝒫 𝐴))
105, 8, 9sylanbrc 583 . 2 (𝐴𝑉𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴)
11 elpwi 4557 . . . . . . . . 9 (𝑏 ∈ 𝒫 𝐴𝑏𝐴)
1211ad2antll 729 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → 𝑏𝐴)
133isf34lem1 10263 . . . . . . . 8 ((𝐴𝑉𝑏𝐴) → (𝐹𝑏) = (𝐴𝑏))
1412, 13syldan 591 . . . . . . 7 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → (𝐹𝑏) = (𝐴𝑏))
15 elpwi 4557 . . . . . . . . 9 (𝑎 ∈ 𝒫 𝐴𝑎𝐴)
1615ad2antrl 728 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → 𝑎𝐴)
173isf34lem1 10263 . . . . . . . 8 ((𝐴𝑉𝑎𝐴) → (𝐹𝑎) = (𝐴𝑎))
1816, 17syldan 591 . . . . . . 7 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → (𝐹𝑎) = (𝐴𝑎))
1914, 18psseq12d 4047 . . . . . 6 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → ((𝐹𝑏) ⊊ (𝐹𝑎) ↔ (𝐴𝑏) ⊊ (𝐴𝑎)))
20 difss 4086 . . . . . . 7 (𝐴𝑎) ⊆ 𝐴
21 pssdifcom1 4440 . . . . . . 7 ((𝑏𝐴 ∧ (𝐴𝑎) ⊆ 𝐴) → ((𝐴𝑏) ⊊ (𝐴𝑎) ↔ (𝐴 ∖ (𝐴𝑎)) ⊊ 𝑏))
2212, 20, 21sylancl 586 . . . . . 6 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → ((𝐴𝑏) ⊊ (𝐴𝑎) ↔ (𝐴 ∖ (𝐴𝑎)) ⊊ 𝑏))
23 dfss4 4219 . . . . . . . 8 (𝑎𝐴 ↔ (𝐴 ∖ (𝐴𝑎)) = 𝑎)
2416, 23sylib 218 . . . . . . 7 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → (𝐴 ∖ (𝐴𝑎)) = 𝑎)
2524psseq1d 4045 . . . . . 6 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → ((𝐴 ∖ (𝐴𝑎)) ⊊ 𝑏𝑎𝑏))
2619, 22, 253bitrrd 306 . . . . 5 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → (𝑎𝑏 ↔ (𝐹𝑏) ⊊ (𝐹𝑎)))
27 vex 3440 . . . . . 6 𝑏 ∈ V
2827brrpss 7659 . . . . 5 (𝑎 [] 𝑏𝑎𝑏)
29 fvex 6835 . . . . . 6 (𝐹𝑎) ∈ V
3029brrpss 7659 . . . . 5 ((𝐹𝑏) [] (𝐹𝑎) ↔ (𝐹𝑏) ⊊ (𝐹𝑎))
3126, 28, 303bitr4g 314 . . . 4 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → (𝑎 [] 𝑏 ↔ (𝐹𝑏) [] (𝐹𝑎)))
32 relrpss 7657 . . . . 5 Rel []
3332relbrcnv 6056 . . . 4 ((𝐹𝑎) [] (𝐹𝑏) ↔ (𝐹𝑏) [] (𝐹𝑎))
3431, 33bitr4di 289 . . 3 ((𝐴𝑉 ∧ (𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴)) → (𝑎 [] 𝑏 ↔ (𝐹𝑎) [] (𝐹𝑏)))
3534ralrimivva 3175 . 2 (𝐴𝑉 → ∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴(𝑎 [] 𝑏 ↔ (𝐹𝑎) [] (𝐹𝑏)))
36 df-isom 6490 . 2 (𝐹 Isom [] , [] (𝒫 𝐴, 𝒫 𝐴) ↔ (𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴 ∧ ∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴(𝑎 [] 𝑏 ↔ (𝐹𝑎) [] (𝐹𝑏))))
3710, 35, 36sylanbrc 583 1 (𝐴𝑉𝐹 Isom [] , [] (𝒫 𝐴, 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cdif 3899  wss 3902  wpss 3903  𝒫 cpw 4550   class class class wbr 5091  cmpt 5172  ccnv 5615   Fn wfn 6476  1-1-ontowf1o 6480  cfv 6481   Isom wiso 6482   [] crpss 7655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-rpss 7656
This theorem is referenced by:  isf34lem3  10266  isf34lem5  10269  isfin1-4  10278
  Copyright terms: Public domain W3C validator