Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  resindir Structured version   Visualization version   GIF version

Theorem resindir 5863
 Description: Class restriction distributes over intersection. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
resindir ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))

Proof of Theorem resindir
StepHypRef Expression
1 inindir 4202 . 2 ((𝐴𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∩ (𝐵 ∩ (𝐶 × V)))
2 df-res 5560 . 2 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐵) ∩ (𝐶 × V))
3 df-res 5560 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
4 df-res 5560 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
53, 4ineq12i 4185 . 2 ((𝐴𝐶) ∩ (𝐵𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∩ (𝐵 ∩ (𝐶 × V)))
61, 2, 53eqtr4i 2852 1 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1531  Vcvv 3493   ∩ cin 3933   × cxp 5546   ↾ cres 5550 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-rab 3145  df-v 3495  df-in 3941  df-res 5560 This theorem is referenced by:  inimass  6005  fnreseql  6811  xrnres3  35644
 Copyright terms: Public domain W3C validator