MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resindir Structured version   Visualization version   GIF version

Theorem resindir 5589
Description: Class restriction distributes over intersection. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
resindir ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))

Proof of Theorem resindir
StepHypRef Expression
1 inindir 3991 . 2 ((𝐴𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∩ (𝐵 ∩ (𝐶 × V)))
2 df-res 5289 . 2 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐵) ∩ (𝐶 × V))
3 df-res 5289 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
4 df-res 5289 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
53, 4ineq12i 3974 . 2 ((𝐴𝐶) ∩ (𝐵𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∩ (𝐵 ∩ (𝐶 × V)))
61, 2, 53eqtr4i 2797 1 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1652  Vcvv 3350  cin 3731   × cxp 5275  cres 5279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-ext 2743
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-v 3352  df-in 3739  df-res 5289
This theorem is referenced by:  inimass  5732  fnreseql  6517  xrnres3  34591
  Copyright terms: Public domain W3C validator