Home | Metamath
Proof Explorer Theorem List (p. 60 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | resiun2 5901* | Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.) |
⊢ (𝐶 ↾ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 (𝐶 ↾ 𝐵) | ||
Theorem | dmres 5902 | The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) |
⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | ||
Theorem | ssdmres 5903 | A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.) |
⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) | ||
Theorem | dmresexg 5904 | The domain of a restriction to a set exists. (Contributed by NM, 7-Apr-1995.) |
⊢ (𝐵 ∈ 𝑉 → dom (𝐴 ↾ 𝐵) ∈ V) | ||
Theorem | resss 5905 | A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | ||
Theorem | rescom 5906 | Commutative law for restriction. (Contributed by NM, 27-Mar-1998.) |
⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ↾ 𝐵) | ||
Theorem | ssres 5907 | Subclass theorem for restriction. (Contributed by NM, 16-Aug-1994.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶)) | ||
Theorem | ssres2 5908 | Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) | ||
Theorem | relres 5909 | A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ Rel (𝐴 ↾ 𝐵) | ||
Theorem | resabs1 5910 | Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.) |
⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) | ||
Theorem | resabs1d 5911 | Absorption law for restriction, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵)) | ||
Theorem | resabs2 5912 | Absorption law for restriction. (Contributed by NM, 27-Mar-1998.) |
⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐵)) | ||
Theorem | residm 5913 | Idempotent law for restriction. (Contributed by NM, 27-Mar-1998.) |
⊢ ((𝐴 ↾ 𝐵) ↾ 𝐵) = (𝐴 ↾ 𝐵) | ||
Theorem | resima 5914 | A restriction to an image. (Contributed by NM, 29-Sep-2004.) |
⊢ ((𝐴 ↾ 𝐵) “ 𝐵) = (𝐴 “ 𝐵) | ||
Theorem | resima2 5915 | Image under a restricted class. (Contributed by FL, 31-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) |
⊢ (𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) “ 𝐵) = (𝐴 “ 𝐵)) | ||
Theorem | rnresss 5916 | The range of a restriction is a subset of the whole range. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ran (𝐴 ↾ 𝐵) ⊆ ran 𝐴 | ||
Theorem | xpssres 5917 | Restriction of a constant function (or other Cartesian product). (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ (𝐶 ⊆ 𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵)) | ||
Theorem | elinxp 5918* | Membership in an intersection with a Cartesian product. (Contributed by Peter Mazsa, 9-Sep-2022.) |
⊢ (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐶 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝑅)) | ||
Theorem | elres 5919* | Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) |
⊢ (𝐴 ∈ (𝐵 ↾ 𝐶) ↔ ∃𝑥 ∈ 𝐶 ∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) | ||
Theorem | elsnres 5920* | Membership in restriction to a singleton. (Contributed by Scott Fenton, 17-Mar-2011.) |
⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑦(𝐴 = 〈𝐶, 𝑦〉 ∧ 〈𝐶, 𝑦〉 ∈ 𝐵)) | ||
Theorem | relssres 5921 | Simplification law for restriction. (Contributed by NM, 16-Aug-1994.) |
⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (𝐴 ↾ 𝐵) = 𝐴) | ||
Theorem | dmressnsn 5922 | The domain of a restriction to a singleton is a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
⊢ (𝐴 ∈ dom 𝐹 → dom (𝐹 ↾ {𝐴}) = {𝐴}) | ||
Theorem | eldmressnsn 5923 | The element of the domain of a restriction to a singleton is the element of the singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom (𝐹 ↾ {𝐴})) | ||
Theorem | eldmeldmressn 5924 | An element of the domain (of a relation) is an element of the domain of the restriction (of the relation) to the singleton containing this element. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
⊢ (𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ dom (𝐹 ↾ {𝑋})) | ||
Theorem | resdm 5925 | A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.) |
⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) | ||
Theorem | resexg 5926 | The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) | ||
Theorem | resexd 5927 | The restriction of a set is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 ↾ 𝐵) ∈ V) | ||
Theorem | resex 5928 | The restriction of a set is a set. (Contributed by Jeff Madsen, 19-Jun-2011.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ↾ 𝐵) ∈ V | ||
Theorem | resindm 5929 | When restricting a relation, intersecting with the domain of the relation has no effect. (Contributed by FL, 6-Oct-2008.) |
⊢ (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ 𝐵)) | ||
Theorem | resdmdfsn 5930 | Restricting a relation to its domain without a set is the same as restricting the relation to the universe without this set. (Contributed by AV, 2-Dec-2018.) |
⊢ (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋}))) | ||
Theorem | resopab 5931* | Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002.) |
⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | ||
Theorem | iss 5932 | A subclass of the identity function is the identity function restricted to its domain. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐴 ⊆ I ↔ 𝐴 = ( I ↾ dom 𝐴)) | ||
Theorem | resopab2 5933* | Restriction of a class abstraction of ordered pairs. (Contributed by NM, 24-Aug-2007.) |
⊢ (𝐴 ⊆ 𝐵 → ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) | ||
Theorem | resmpt 5934* | Restriction of the mapping operation. (Contributed by Mario Carneiro, 15-Jul-2013.) |
⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | resmpt3 5935* | Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Proof shortened by Mario Carneiro, 22-Mar-2015.) |
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) | ||
Theorem | resmptf 5936 | Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | resmptd 5937* | Restriction of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | dfres2 5938* | Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013.) |
⊢ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} | ||
Theorem | mptss 5939* | Sufficient condition for inclusion among two functions in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | elidinxp 5940* | Characterization of the elements of the intersection of the identity relation with a Cartesian product. (Contributed by Peter Mazsa, 9-Sep-2022.) |
⊢ (𝐶 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)𝐶 = 〈𝑥, 𝑥〉) | ||
Theorem | elidinxpid 5941* | Characterization of the elements of the intersection of the identity relation with a Cartesian square. (Contributed by Peter Mazsa, 9-Sep-2022.) |
⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ ∃𝑥 ∈ 𝐴 𝐵 = 〈𝑥, 𝑥〉) | ||
Theorem | elrid 5942* | Characterization of the elements of a restricted identity relation. (Contributed by BJ, 28-Aug-2022.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) |
⊢ (𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐴 = 〈𝑥, 𝑥〉) | ||
Theorem | idinxpres 5943 | The intersection of the identity relation with a cartesian product is the restriction of the identity relation to the intersection of the factors. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) Generalize statement from cartesian square (now idinxpresid 5944) to cartesian product. (Revised by BJ, 23-Dec-2023.) |
⊢ ( I ∩ (𝐴 × 𝐵)) = ( I ↾ (𝐴 ∩ 𝐵)) | ||
Theorem | idinxpresid 5944 | The intersection of the identity relation with the cartesian square of a class is the restriction of the identity relation to that class. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) (Proof shortened by BJ, 23-Dec-2023.) |
⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) | ||
Theorem | idssxp 5945 | A diagonal set as a subset of a Cartesian square. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by BJ, 9-Sep-2022.) |
⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | ||
Theorem | opabresid 5946* | The restricted identity relation expressed as an ordered-pair class abstraction. (Contributed by FL, 25-Apr-2012.) |
⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | ||
Theorem | mptresid 5947* | The restricted identity relation expressed in maps-to notation. (Contributed by FL, 25-Apr-2012.) |
⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) | ||
Theorem | opabresidOLD 5948* | Obsolete version of opabresid 5946 as of 26-Dec-2023. (Contributed by FL, 25-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} = ( I ↾ 𝐴) | ||
Theorem | mptresidOLD 5949* | Obsolete version of mptresid 5947 as of 26-Dec-2023. (Contributed by FL, 25-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = ( I ↾ 𝐴) | ||
Theorem | dmresi 5950 | The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.) |
⊢ dom ( I ↾ 𝐴) = 𝐴 | ||
Theorem | restidsing 5951 | Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) (Proof shortened by Peter Mazsa, 6-Oct-2022.) |
⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) | ||
Theorem | iresn0n0 5952 | The identity function restricted to a class 𝐴 is empty iff the class 𝐴 is empty. (Contributed by AV, 30-Jan-2024.) |
⊢ (𝐴 = ∅ ↔ ( I ↾ 𝐴) = ∅) | ||
Theorem | imaeq1 5953 | Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | ||
Theorem | imaeq2 5954 | Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | ||
Theorem | imaeq1i 5955 | Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) | ||
Theorem | imaeq2i 5956 | Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) | ||
Theorem | imaeq1d 5957 | Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | ||
Theorem | imaeq2d 5958 | Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | ||
Theorem | imaeq12d 5959 | Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐷)) | ||
Theorem | dfima2 5960* | Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 19-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} | ||
Theorem | dfima3 5961* | Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} | ||
Theorem | elimag 5962* | Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 20-Jan-2007.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) | ||
Theorem | elima 5963* | Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 19-Apr-2004.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴) | ||
Theorem | elima2 5964* | Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 11-Aug-2004.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴)) | ||
Theorem | elima3 5965* | Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 14-Aug-1994.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 〈𝑥, 𝐴〉 ∈ 𝐵)) | ||
Theorem | nfima 5966 | Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 “ 𝐵) | ||
Theorem | nfimad 5967 | Deduction version of bound-variable hypothesis builder nfima 5966. (Contributed by FL, 15-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥(𝐴 “ 𝐵)) | ||
Theorem | imadmrn 5968 | The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.) |
⊢ (𝐴 “ dom 𝐴) = ran 𝐴 | ||
Theorem | imassrn 5969 | The image of a class is a subset of its range. Theorem 3.16(xi) of [Monk1] p. 39. (Contributed by NM, 31-Mar-1995.) |
⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | ||
Theorem | mptima 5970* | Image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) | ||
Theorem | imai 5971 | Image under the identity relation. Theorem 3.16(viii) of [Monk1] p. 38. (Contributed by NM, 30-Apr-1998.) |
⊢ ( I “ 𝐴) = 𝐴 | ||
Theorem | rnresi 5972 | The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.) |
⊢ ran ( I ↾ 𝐴) = 𝐴 | ||
Theorem | resiima 5973 | The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006.) |
⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵) | ||
Theorem | ima0 5974 | Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.) |
⊢ (𝐴 “ ∅) = ∅ | ||
Theorem | 0ima 5975 | Image under the empty relation. (Contributed by FL, 11-Jan-2007.) |
⊢ (∅ “ 𝐴) = ∅ | ||
Theorem | csbima12 5976 | Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006.) (Revised by NM, 20-Aug-2018.) |
⊢ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) | ||
Theorem | imadisj 5977 | A class whose image under another is empty is disjoint with the other's domain. (Contributed by FL, 24-Jan-2007.) |
⊢ ((𝐴 “ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) | ||
Theorem | cnvimass 5978 | A preimage under any class is included in the domain of the class. (Contributed by FL, 29-Jan-2007.) |
⊢ (◡𝐴 “ 𝐵) ⊆ dom 𝐴 | ||
Theorem | cnvimarndm 5979 | The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.) |
⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 | ||
Theorem | imasng 5980* | The image of a singleton. (Contributed by NM, 8-May-2005.) |
⊢ (𝐴 ∈ 𝐵 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) | ||
Theorem | relimasn 5981* | The image of a singleton. (Contributed by NM, 20-May-1998.) |
⊢ (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) | ||
Theorem | elrelimasn 5982 | Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015.) |
⊢ (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)) | ||
Theorem | elimasng1 5983 | Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) Revise to use df-br 5071 and to prove elimasn1 5984 from it. (Revised by BJ, 16-Oct-2024.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)) | ||
Theorem | elimasn1 5984 | Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Use df-br 5071 and shorten. (Revised by BJ, 16-Oct-2024.) |
⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶) | ||
Theorem | elimasng 5985 | Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) TODO: replace existing usages by usages of elimasng1 5983, remove, and relabel elimasng1 5983 to "elimasng". |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) | ||
Theorem | elimasn 5986 | Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by BJ, 16-Oct-2024.) TODO: replace existing usages by usages of elimasn1 5984, remove, and relabel elimasn1 5984 to "elimasn". |
⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) | ||
Theorem | elimasngOLD 5987 | Obsolete version of elimasng 5985 as of 16-Oct-2024. (Contributed by Raph Levien, 21-Oct-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) | ||
Theorem | elimasni 5988 | Membership in an image of a singleton. (Contributed by NM, 5-Aug-2010.) |
⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶) | ||
Theorem | args 5989* | Two ways to express the class of unique-valued arguments of 𝐹, which is the same as the domain of 𝐹 whenever 𝐹 is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg 𝐹 " for this class (for which we have no separate notation). Observe the resemblance to the alternate definition dffv4 6753 of function value, which is based on the idea in Quine's definition. (Contributed by NM, 8-May-2005.) |
⊢ {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} | ||
Theorem | elinisegg 5990 | Membership in the inverse image of a singleton. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Put in closed form and shorten. (Revised by BJ, 16-Oct-2024.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | ||
Theorem | eliniseg 5991 | Membership in the inverse image of a singleton. An application is to express initial segments for an order relation. See for example Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ 𝐶 ∈ V ⇒ ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | ||
Theorem | epin 5992 | Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) Put in closed form. (Revised by BJ, 16-Oct-2024.) |
⊢ (𝐴 ∈ 𝑉 → (◡ E “ {𝐴}) = 𝐴) | ||
Theorem | epini 5993 | Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (◡ E “ {𝐴}) = 𝐴 | ||
Theorem | iniseg 5994* | An idiom that signifies an initial segment of an ordering, used, for example, in Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) |
⊢ (𝐵 ∈ 𝑉 → (◡𝐴 “ {𝐵}) = {𝑥 ∣ 𝑥𝐴𝐵}) | ||
Theorem | inisegn0 5995 | Nonemptiness of an initial segment in terms of range. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ (𝐴 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝐴}) ≠ ∅) | ||
Theorem | dffr3 5996* | Alternate definition of well-founded relation. Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 23-Jun-2015.) |
⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) | ||
Theorem | dfse2 5997* | Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015.) |
⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) | ||
Theorem | imass1 5998 | Subset theorem for image. (Contributed by NM, 16-Mar-2004.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐴 “ 𝐶) ⊆ (𝐵 “ 𝐶)) | ||
Theorem | imass2 5999 | Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) | ||
Theorem | ndmima 6000 | The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.) (Proof shortened by OpenAI, 3-Jul-2020.) |
⊢ (¬ 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |