![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resindi | Structured version Visualization version GIF version |
Description: Class restriction distributes over intersection. (Contributed by FL, 6-Oct-2008.) |
Ref | Expression |
---|---|
resindi | ⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpindir 5552 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) × V) = ((𝐵 × V) ∩ (𝐶 × V)) | |
2 | 1 | ineq2i 4068 | . . 3 ⊢ (𝐴 ∩ ((𝐵 ∩ 𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V))) |
3 | inindi 4085 | . . 3 ⊢ (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐴 ∩ (𝐶 × V))) | |
4 | 2, 3 | eqtri 2797 | . 2 ⊢ (𝐴 ∩ ((𝐵 ∩ 𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐴 ∩ (𝐶 × V))) |
5 | df-res 5416 | . 2 ⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 ∩ ((𝐵 ∩ 𝐶) × V)) | |
6 | df-res 5416 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
7 | df-res 5416 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
8 | 6, 7 | ineq12i 4069 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ 𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐴 ∩ (𝐶 × V))) |
9 | 4, 5, 8 | 3eqtr4i 2807 | 1 ⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1508 Vcvv 3410 ∩ cin 3823 × cxp 5402 ↾ cres 5406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pr 5183 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-rab 3092 df-v 3412 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-sn 4437 df-pr 4439 df-op 4443 df-opab 4989 df-xp 5410 df-rel 5411 df-res 5416 |
This theorem is referenced by: resindm 5743 gsum2dlem2 18857 fnresin 30153 |
Copyright terms: Public domain | W3C validator |