| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resindi | Structured version Visualization version GIF version | ||
| Description: Class restriction distributes over intersection. (Contributed by FL, 6-Oct-2008.) |
| Ref | Expression |
|---|---|
| resindi | ⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpindir 5801 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) × V) = ((𝐵 × V) ∩ (𝐶 × V)) | |
| 2 | 1 | ineq2i 4183 | . . 3 ⊢ (𝐴 ∩ ((𝐵 ∩ 𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V))) |
| 3 | inindi 4201 | . . 3 ⊢ (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐴 ∩ (𝐶 × V))) | |
| 4 | 2, 3 | eqtri 2753 | . 2 ⊢ (𝐴 ∩ ((𝐵 ∩ 𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐴 ∩ (𝐶 × V))) |
| 5 | df-res 5653 | . 2 ⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = (𝐴 ∩ ((𝐵 ∩ 𝐶) × V)) | |
| 6 | df-res 5653 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 7 | df-res 5653 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 8 | 6, 7 | ineq12i 4184 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ 𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐴 ∩ (𝐶 × V))) |
| 9 | 4, 5, 8 | 3eqtr4i 2763 | 1 ⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3450 ∩ cin 3916 × cxp 5639 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-opab 5173 df-xp 5647 df-rel 5648 df-res 5653 |
| This theorem is referenced by: resindm 6004 gsum2dlem2 19908 fnresin 32557 fressupp 32618 disjresdisj 38236 |
| Copyright terms: Public domain | W3C validator |