MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resindi Structured version   Visualization version   GIF version

Theorem resindi 5712
Description: Class restriction distributes over intersection. (Contributed by FL, 6-Oct-2008.)
Assertion
Ref Expression
resindi (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))

Proof of Theorem resindi
StepHypRef Expression
1 xpindir 5552 . . . 4 ((𝐵𝐶) × V) = ((𝐵 × V) ∩ (𝐶 × V))
21ineq2i 4068 . . 3 (𝐴 ∩ ((𝐵𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V)))
3 inindi 4085 . . 3 (𝐴 ∩ ((𝐵 × V) ∩ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐴 ∩ (𝐶 × V)))
42, 3eqtri 2797 . 2 (𝐴 ∩ ((𝐵𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐴 ∩ (𝐶 × V)))
5 df-res 5416 . 2 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ∩ ((𝐵𝐶) × V))
6 df-res 5416 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
7 df-res 5416 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
86, 7ineq12i 4069 . 2 ((𝐴𝐵) ∩ (𝐴𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∩ (𝐴 ∩ (𝐶 × V)))
94, 5, 83eqtr4i 2807 1 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1508  Vcvv 3410  cin 3823   × cxp 5402  cres 5406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pr 5183
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-rab 3092  df-v 3412  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-nul 4174  df-if 4346  df-sn 4437  df-pr 4439  df-op 4443  df-opab 4989  df-xp 5410  df-rel 5411  df-res 5416
This theorem is referenced by:  resindm  5743  gsum2dlem2  18857  fnresin  30153
  Copyright terms: Public domain W3C validator