MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnreseql Structured version   Visualization version   GIF version

Theorem fnreseql 6907
Description: Two functions are equal on a subset iff their equalizer contains that subset. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
fnreseql ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = (𝐺𝑋) ↔ 𝑋 ⊆ dom (𝐹𝐺)))

Proof of Theorem fnreseql
StepHypRef Expression
1 fnssres 6539 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹𝑋) Fn 𝑋)
213adant2 1129 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → (𝐹𝑋) Fn 𝑋)
3 fnssres 6539 . . . 4 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐺𝑋) Fn 𝑋)
433adant1 1128 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → (𝐺𝑋) Fn 𝑋)
5 fneqeql 6905 . . 3 (((𝐹𝑋) Fn 𝑋 ∧ (𝐺𝑋) Fn 𝑋) → ((𝐹𝑋) = (𝐺𝑋) ↔ dom ((𝐹𝑋) ∩ (𝐺𝑋)) = 𝑋))
62, 4, 5syl2anc 583 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = (𝐺𝑋) ↔ dom ((𝐹𝑋) ∩ (𝐺𝑋)) = 𝑋))
7 resindir 5897 . . . . . 6 ((𝐹𝐺) ↾ 𝑋) = ((𝐹𝑋) ∩ (𝐺𝑋))
87dmeqi 5802 . . . . 5 dom ((𝐹𝐺) ↾ 𝑋) = dom ((𝐹𝑋) ∩ (𝐺𝑋))
9 dmres 5902 . . . . 5 dom ((𝐹𝐺) ↾ 𝑋) = (𝑋 ∩ dom (𝐹𝐺))
108, 9eqtr3i 2768 . . . 4 dom ((𝐹𝑋) ∩ (𝐺𝑋)) = (𝑋 ∩ dom (𝐹𝐺))
1110eqeq1i 2743 . . 3 (dom ((𝐹𝑋) ∩ (𝐺𝑋)) = 𝑋 ↔ (𝑋 ∩ dom (𝐹𝐺)) = 𝑋)
12 df-ss 3900 . . 3 (𝑋 ⊆ dom (𝐹𝐺) ↔ (𝑋 ∩ dom (𝐹𝐺)) = 𝑋)
1311, 12bitr4i 277 . 2 (dom ((𝐹𝑋) ∩ (𝐺𝑋)) = 𝑋𝑋 ⊆ dom (𝐹𝐺))
146, 13bitrdi 286 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = (𝐺𝑋) ↔ 𝑋 ⊆ dom (𝐹𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  cin 3882  wss 3883  dom cdm 5580  cres 5582   Fn wfn 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  lspextmo  20233  evlseu  21203  symgcom2  31255  hauseqcn  31750
  Copyright terms: Public domain W3C validator