| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnreseql | Structured version Visualization version GIF version | ||
| Description: Two functions are equal on a subset iff their equalizer contains that subset. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| fnreseql | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ↔ 𝑋 ⊆ dom (𝐹 ∩ 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnssres 6691 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝐹 ↾ 𝑋) Fn 𝑋) | |
| 2 | 1 | 3adant2 1132 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝐹 ↾ 𝑋) Fn 𝑋) |
| 3 | fnssres 6691 | . . . 4 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝐺 ↾ 𝑋) Fn 𝑋) | |
| 4 | 3 | 3adant1 1131 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝐺 ↾ 𝑋) Fn 𝑋) |
| 5 | fneqeql 7066 | . . 3 ⊢ (((𝐹 ↾ 𝑋) Fn 𝑋 ∧ (𝐺 ↾ 𝑋) Fn 𝑋) → ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ↔ dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = 𝑋)) | |
| 6 | 2, 4, 5 | syl2anc 584 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ↔ dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = 𝑋)) |
| 7 | resindir 6014 | . . . . . 6 ⊢ ((𝐹 ∩ 𝐺) ↾ 𝑋) = ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) | |
| 8 | 7 | dmeqi 5915 | . . . . 5 ⊢ dom ((𝐹 ∩ 𝐺) ↾ 𝑋) = dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) |
| 9 | dmres 6030 | . . . . 5 ⊢ dom ((𝐹 ∩ 𝐺) ↾ 𝑋) = (𝑋 ∩ dom (𝐹 ∩ 𝐺)) | |
| 10 | 8, 9 | eqtr3i 2767 | . . . 4 ⊢ dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = (𝑋 ∩ dom (𝐹 ∩ 𝐺)) |
| 11 | 10 | eqeq1i 2742 | . . 3 ⊢ (dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = 𝑋 ↔ (𝑋 ∩ dom (𝐹 ∩ 𝐺)) = 𝑋) |
| 12 | dfss2 3969 | . . 3 ⊢ (𝑋 ⊆ dom (𝐹 ∩ 𝐺) ↔ (𝑋 ∩ dom (𝐹 ∩ 𝐺)) = 𝑋) | |
| 13 | 11, 12 | bitr4i 278 | . 2 ⊢ (dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = 𝑋 ↔ 𝑋 ⊆ dom (𝐹 ∩ 𝐺)) |
| 14 | 6, 13 | bitrdi 287 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ↔ 𝑋 ⊆ dom (𝐹 ∩ 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1540 ∩ cin 3950 ⊆ wss 3951 dom cdm 5685 ↾ cres 5687 Fn wfn 6556 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-fv 6569 |
| This theorem is referenced by: lspextmo 21055 evlseu 22107 symgcom2 33104 hauseqcn 33897 |
| Copyright terms: Public domain | W3C validator |