MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnreseql Structured version   Visualization version   GIF version

Theorem fnreseql 6986
Description: Two functions are equal on a subset iff their equalizer contains that subset. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
fnreseql ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = (𝐺𝑋) ↔ 𝑋 ⊆ dom (𝐹𝐺)))

Proof of Theorem fnreseql
StepHypRef Expression
1 fnssres 6609 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹𝑋) Fn 𝑋)
213adant2 1131 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → (𝐹𝑋) Fn 𝑋)
3 fnssres 6609 . . . 4 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐺𝑋) Fn 𝑋)
433adant1 1130 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → (𝐺𝑋) Fn 𝑋)
5 fneqeql 6984 . . 3 (((𝐹𝑋) Fn 𝑋 ∧ (𝐺𝑋) Fn 𝑋) → ((𝐹𝑋) = (𝐺𝑋) ↔ dom ((𝐹𝑋) ∩ (𝐺𝑋)) = 𝑋))
62, 4, 5syl2anc 584 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = (𝐺𝑋) ↔ dom ((𝐹𝑋) ∩ (𝐺𝑋)) = 𝑋))
7 resindir 5951 . . . . . 6 ((𝐹𝐺) ↾ 𝑋) = ((𝐹𝑋) ∩ (𝐺𝑋))
87dmeqi 5851 . . . . 5 dom ((𝐹𝐺) ↾ 𝑋) = dom ((𝐹𝑋) ∩ (𝐺𝑋))
9 dmres 5967 . . . . 5 dom ((𝐹𝐺) ↾ 𝑋) = (𝑋 ∩ dom (𝐹𝐺))
108, 9eqtr3i 2754 . . . 4 dom ((𝐹𝑋) ∩ (𝐺𝑋)) = (𝑋 ∩ dom (𝐹𝐺))
1110eqeq1i 2734 . . 3 (dom ((𝐹𝑋) ∩ (𝐺𝑋)) = 𝑋 ↔ (𝑋 ∩ dom (𝐹𝐺)) = 𝑋)
12 dfss2 3923 . . 3 (𝑋 ⊆ dom (𝐹𝐺) ↔ (𝑋 ∩ dom (𝐹𝐺)) = 𝑋)
1311, 12bitr4i 278 . 2 (dom ((𝐹𝑋) ∩ (𝐺𝑋)) = 𝑋𝑋 ⊆ dom (𝐹𝐺))
146, 13bitrdi 287 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = (𝐺𝑋) ↔ 𝑋 ⊆ dom (𝐹𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  cin 3904  wss 3905  dom cdm 5623  cres 5625   Fn wfn 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by:  lspextmo  20978  evlseu  22006  symgcom2  33039  hauseqcn  33864
  Copyright terms: Public domain W3C validator