Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnreseql | Structured version Visualization version GIF version |
Description: Two functions are equal on a subset iff their equalizer contains that subset. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
fnreseql | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ↔ 𝑋 ⊆ dom (𝐹 ∩ 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnssres 6586 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝐹 ↾ 𝑋) Fn 𝑋) | |
2 | 1 | 3adant2 1131 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝐹 ↾ 𝑋) Fn 𝑋) |
3 | fnssres 6586 | . . . 4 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝐺 ↾ 𝑋) Fn 𝑋) | |
4 | 3 | 3adant1 1130 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝐺 ↾ 𝑋) Fn 𝑋) |
5 | fneqeql 6955 | . . 3 ⊢ (((𝐹 ↾ 𝑋) Fn 𝑋 ∧ (𝐺 ↾ 𝑋) Fn 𝑋) → ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ↔ dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = 𝑋)) | |
6 | 2, 4, 5 | syl2anc 585 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ↔ dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = 𝑋)) |
7 | resindir 5920 | . . . . . 6 ⊢ ((𝐹 ∩ 𝐺) ↾ 𝑋) = ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) | |
8 | 7 | dmeqi 5826 | . . . . 5 ⊢ dom ((𝐹 ∩ 𝐺) ↾ 𝑋) = dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) |
9 | dmres 5925 | . . . . 5 ⊢ dom ((𝐹 ∩ 𝐺) ↾ 𝑋) = (𝑋 ∩ dom (𝐹 ∩ 𝐺)) | |
10 | 8, 9 | eqtr3i 2766 | . . . 4 ⊢ dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = (𝑋 ∩ dom (𝐹 ∩ 𝐺)) |
11 | 10 | eqeq1i 2741 | . . 3 ⊢ (dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = 𝑋 ↔ (𝑋 ∩ dom (𝐹 ∩ 𝐺)) = 𝑋) |
12 | df-ss 3909 | . . 3 ⊢ (𝑋 ⊆ dom (𝐹 ∩ 𝐺) ↔ (𝑋 ∩ dom (𝐹 ∩ 𝐺)) = 𝑋) | |
13 | 11, 12 | bitr4i 278 | . 2 ⊢ (dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = 𝑋 ↔ 𝑋 ⊆ dom (𝐹 ∩ 𝐺)) |
14 | 6, 13 | bitrdi 287 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ↔ 𝑋 ⊆ dom (𝐹 ∩ 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1539 ∩ cin 3891 ⊆ wss 3892 dom cdm 5600 ↾ cres 5602 Fn wfn 6453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-fv 6466 |
This theorem is referenced by: lspextmo 20367 evlseu 21342 symgcom2 31402 hauseqcn 31897 |
Copyright terms: Public domain | W3C validator |