| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inimass | Structured version Visualization version GIF version | ||
| Description: The image of an intersection. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
| Ref | Expression |
|---|---|
| inimass | ⊢ ((𝐴 ∩ 𝐵) “ 𝐶) ⊆ ((𝐴 “ 𝐶) ∩ (𝐵 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnin 6119 | . 2 ⊢ ran ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) ⊆ (ran (𝐴 ↾ 𝐶) ∩ ran (𝐵 ↾ 𝐶)) | |
| 2 | df-ima 5651 | . . 3 ⊢ ((𝐴 ∩ 𝐵) “ 𝐶) = ran ((𝐴 ∩ 𝐵) ↾ 𝐶) | |
| 3 | resindir 5967 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) | |
| 4 | 3 | rneqi 5901 | . . 3 ⊢ ran ((𝐴 ∩ 𝐵) ↾ 𝐶) = ran ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) |
| 5 | 2, 4 | eqtri 2752 | . 2 ⊢ ((𝐴 ∩ 𝐵) “ 𝐶) = ran ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) |
| 6 | df-ima 5651 | . . 3 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
| 7 | df-ima 5651 | . . 3 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
| 8 | 6, 7 | ineq12i 4181 | . 2 ⊢ ((𝐴 “ 𝐶) ∩ (𝐵 “ 𝐶)) = (ran (𝐴 ↾ 𝐶) ∩ ran (𝐵 ↾ 𝐶)) |
| 9 | 1, 5, 8 | 3sstr4i 3998 | 1 ⊢ ((𝐴 ∩ 𝐵) “ 𝐶) ⊆ ((𝐴 “ 𝐶) ∩ (𝐵 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3913 ⊆ wss 3914 ran crn 5639 ↾ cres 5640 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: restutopopn 24126 |
| Copyright terms: Public domain | W3C validator |