MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inimass Structured version   Visualization version   GIF version

Theorem inimass 6177
Description: The image of an intersection. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
inimass ((𝐴𝐵) “ 𝐶) ⊆ ((𝐴𝐶) ∩ (𝐵𝐶))

Proof of Theorem inimass
StepHypRef Expression
1 rnin 6169 . 2 ran ((𝐴𝐶) ∩ (𝐵𝐶)) ⊆ (ran (𝐴𝐶) ∩ ran (𝐵𝐶))
2 df-ima 5702 . . 3 ((𝐴𝐵) “ 𝐶) = ran ((𝐴𝐵) ↾ 𝐶)
3 resindir 6017 . . . 4 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
43rneqi 5951 . . 3 ran ((𝐴𝐵) ↾ 𝐶) = ran ((𝐴𝐶) ∩ (𝐵𝐶))
52, 4eqtri 2763 . 2 ((𝐴𝐵) “ 𝐶) = ran ((𝐴𝐶) ∩ (𝐵𝐶))
6 df-ima 5702 . . 3 (𝐴𝐶) = ran (𝐴𝐶)
7 df-ima 5702 . . 3 (𝐵𝐶) = ran (𝐵𝐶)
86, 7ineq12i 4226 . 2 ((𝐴𝐶) ∩ (𝐵𝐶)) = (ran (𝐴𝐶) ∩ ran (𝐵𝐶))
91, 5, 83sstr4i 4039 1 ((𝐴𝐵) “ 𝐶) ⊆ ((𝐴𝐶) ∩ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  cin 3962  wss 3963  ran crn 5690  cres 5691  cima 5692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702
This theorem is referenced by:  restutopopn  24263
  Copyright terms: Public domain W3C validator