MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inimass Structured version   Visualization version   GIF version

Theorem inimass 6047
Description: The image of an intersection. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
inimass ((𝐴𝐵) “ 𝐶) ⊆ ((𝐴𝐶) ∩ (𝐵𝐶))

Proof of Theorem inimass
StepHypRef Expression
1 rnin 6039 . 2 ran ((𝐴𝐶) ∩ (𝐵𝐶)) ⊆ (ran (𝐴𝐶) ∩ ran (𝐵𝐶))
2 df-ima 5593 . . 3 ((𝐴𝐵) “ 𝐶) = ran ((𝐴𝐵) ↾ 𝐶)
3 resindir 5897 . . . 4 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
43rneqi 5835 . . 3 ran ((𝐴𝐵) ↾ 𝐶) = ran ((𝐴𝐶) ∩ (𝐵𝐶))
52, 4eqtri 2766 . 2 ((𝐴𝐵) “ 𝐶) = ran ((𝐴𝐶) ∩ (𝐵𝐶))
6 df-ima 5593 . . 3 (𝐴𝐶) = ran (𝐴𝐶)
7 df-ima 5593 . . 3 (𝐵𝐶) = ran (𝐵𝐶)
86, 7ineq12i 4141 . 2 ((𝐴𝐶) ∩ (𝐵𝐶)) = (ran (𝐴𝐶) ∩ ran (𝐵𝐶))
91, 5, 83sstr4i 3960 1 ((𝐴𝐵) “ 𝐶) ⊆ ((𝐴𝐶) ∩ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  cin 3882  wss 3883  ran crn 5581  cres 5582  cima 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  restutopopn  23298
  Copyright terms: Public domain W3C validator