MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inimass Structured version   Visualization version   GIF version

Theorem inimass 6174
Description: The image of an intersection. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
inimass ((𝐴𝐵) “ 𝐶) ⊆ ((𝐴𝐶) ∩ (𝐵𝐶))

Proof of Theorem inimass
StepHypRef Expression
1 rnin 6165 . 2 ran ((𝐴𝐶) ∩ (𝐵𝐶)) ⊆ (ran (𝐴𝐶) ∩ ran (𝐵𝐶))
2 df-ima 5697 . . 3 ((𝐴𝐵) “ 𝐶) = ran ((𝐴𝐵) ↾ 𝐶)
3 resindir 6013 . . . 4 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
43rneqi 5947 . . 3 ran ((𝐴𝐵) ↾ 𝐶) = ran ((𝐴𝐶) ∩ (𝐵𝐶))
52, 4eqtri 2764 . 2 ((𝐴𝐵) “ 𝐶) = ran ((𝐴𝐶) ∩ (𝐵𝐶))
6 df-ima 5697 . . 3 (𝐴𝐶) = ran (𝐴𝐶)
7 df-ima 5697 . . 3 (𝐵𝐶) = ran (𝐵𝐶)
86, 7ineq12i 4217 . 2 ((𝐴𝐶) ∩ (𝐵𝐶)) = (ran (𝐴𝐶) ∩ ran (𝐵𝐶))
91, 5, 83sstr4i 4034 1 ((𝐴𝐵) “ 𝐶) ⊆ ((𝐴𝐶) ∩ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  cin 3949  wss 3950  ran crn 5685  cres 5686  cima 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-xp 5690  df-rel 5691  df-cnv 5692  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697
This theorem is referenced by:  restutopopn  24248
  Copyright terms: Public domain W3C validator