Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isinito2lem Structured version   Visualization version   GIF version

Theorem isinito2lem 49196
Description: The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025.)
Hypotheses
Ref Expression
isinito2.1 1 = (SetCat‘1o)
isinito2.f 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅)
isinito2lem.c (𝜑𝐶 ∈ Cat)
isinito2lem.i (𝜑𝐼 ∈ (Base‘𝐶))
Assertion
Ref Expression
isinito2lem (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼(𝐹(𝐶UP 1 )∅)∅))

Proof of Theorem isinito2lem
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reutru 48697 . . . . 5 (∃!𝑓 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥) ↔ ∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)⊤)
2 0ex 5287 . . . . . . . 8 ∅ ∈ V
3 eqeq1 2738 . . . . . . . . 9 (𝑦 = ∅ → (𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ ∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
43reubidv 3381 . . . . . . . 8 (𝑦 = ∅ → (∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ ∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
52, 4ralsn 4661 . . . . . . 7 (∀𝑦 ∈ {∅}∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ ∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅))
6 eqid 2734 . . . . . . . . . . . . . . . . 17 ( 1 Δfunc𝐶) = ( 1 Δfunc𝐶)
7 isinito2.1 . . . . . . . . . . . . . . . . . . . 20 1 = (SetCat‘1o)
8 setc1oterm 49189 . . . . . . . . . . . . . . . . . . . 20 (SetCat‘1o) ∈ TermCat
97, 8eqeltri 2829 . . . . . . . . . . . . . . . . . . 19 1 ∈ TermCat
109a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑1 ∈ TermCat)
1110termccd 49178 . . . . . . . . . . . . . . . . 17 (𝜑1 ∈ Cat)
12 isinito2lem.c . . . . . . . . . . . . . . . . 17 (𝜑𝐶 ∈ Cat)
137setc1obas 49190 . . . . . . . . . . . . . . . . 17 1o = (Base‘ 1 )
14 0lt1o 8524 . . . . . . . . . . . . . . . . . 18 ∅ ∈ 1o
1514a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ∅ ∈ 1o)
16 isinito2.f . . . . . . . . . . . . . . . . 17 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅)
17 eqid 2734 . . . . . . . . . . . . . . . . 17 (Base‘𝐶) = (Base‘𝐶)
18 isinito2lem.i . . . . . . . . . . . . . . . . 17 (𝜑𝐼 ∈ (Base‘𝐶))
196, 11, 12, 13, 15, 16, 17, 18diag11 18259 . . . . . . . . . . . . . . . 16 (𝜑 → ((1st𝐹)‘𝐼) = ∅)
2019adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝐼) = ∅)
2120opeq2d 4860 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨∅, ((1st𝐹)‘𝐼)⟩ = ⟨∅, ∅⟩)
2211adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝐶)) → 1 ∈ Cat)
2312adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
2414a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝐶)) → ∅ ∈ 1o)
25 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
266, 22, 23, 13, 24, 16, 17, 25diag11 18259 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) = ∅)
2721, 26oveq12d 7431 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝐶)) → (⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥)) = (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}∅))
28 snex 5416 . . . . . . . . . . . . . 14 {⟨∅, ∅, ∅⟩} ∈ V
2928ovsn2 48745 . . . . . . . . . . . . 13 (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}∅) = {⟨∅, ∅, ∅⟩}
3027, 29eqtrdi 2785 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝐶)) → (⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥)) = {⟨∅, ∅, ∅⟩})
3130adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → (⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥)) = {⟨∅, ∅, ∅⟩})
329a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 1 ∈ TermCat)
3332termccd 49178 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 1 ∈ Cat)
3412ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 𝐶 ∈ Cat)
3514a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → ∅ ∈ 1o)
3618ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 𝐼 ∈ (Base‘𝐶))
37 eqid 2734 . . . . . . . . . . . . 13 (Hom ‘𝐶) = (Hom ‘𝐶)
38 eqid 2734 . . . . . . . . . . . . 13 (Id‘ 1 ) = (Id‘ 1 )
39 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 𝑥 ∈ (Base‘𝐶))
40 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥))
416, 33, 34, 13, 35, 16, 17, 36, 37, 38, 39, 40diag12 18260 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → ((𝐼(2nd𝐹)𝑥)‘𝑓) = ((Id‘ 1 )‘∅))
427, 38setc1oid 49193 . . . . . . . . . . . 12 ((Id‘ 1 )‘∅) = ∅
4341, 42eqtrdi 2785 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → ((𝐼(2nd𝐹)𝑥)‘𝑓) = ∅)
44 eqidd 2735 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → ∅ = ∅)
4531, 43, 44oveq123d 7434 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) = (∅{⟨∅, ∅, ∅⟩}∅))
462ovsn2 48745 . . . . . . . . . 10 (∅{⟨∅, ∅, ∅⟩}∅) = ∅
4745, 46eqtr2di 2786 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → ∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅))
48 tbtru 1547 . . . . . . . . 9 (∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ (∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ ⊤))
4947, 48sylib 218 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → (∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ ⊤))
5049reubidva 3379 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ ∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)⊤))
515, 50bitr2id 284 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)⊤ ↔ ∀𝑦 ∈ {∅}∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
5226oveq2d 7429 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝑥)) = (∅{⟨∅, ∅, 1o⟩}∅))
53 1oex 8498 . . . . . . . . . 10 1o ∈ V
5453ovsn2 48745 . . . . . . . . 9 (∅{⟨∅, ∅, 1o⟩}∅) = 1o
55 df1o2 8495 . . . . . . . . 9 1o = {∅}
5654, 55eqtri 2757 . . . . . . . 8 (∅{⟨∅, ∅, 1o⟩}∅) = {∅}
5752, 56eqtrdi 2785 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝑥)) = {∅})
5857raleqdv 3309 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∀𝑦 ∈ (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝑥))∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ ∀𝑦 ∈ {∅}∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
5951, 58bitr4d 282 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)⊤ ↔ ∀𝑦 ∈ (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝑥))∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
601, 59bitrid 283 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∃!𝑓 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥) ↔ ∀𝑦 ∈ (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝑥))∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
6160ralbidva 3163 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝑥))∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
6217, 37, 12, 18isinito 18013 . . 3 (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ ∀𝑥 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)))
637setc1ohomfval 49191 . . . 4 {⟨∅, ∅, 1o⟩} = (Hom ‘ 1 )
647setc1ocofval 49192 . . . 4 {⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} = (comp‘ 1 )
657, 16, 12funcsetc1ocl 49194 . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 1 ))
6665func1st2nd 48936 . . . 4 (𝜑 → (1st𝐹)(𝐶 Func 1 )(2nd𝐹))
6719oveq2d 7429 . . . . . 6 (𝜑 → (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝐼)) = (∅{⟨∅, ∅, 1o⟩}∅))
6867, 54eqtrdi 2785 . . . . 5 (𝜑 → (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝐼)) = 1o)
6914, 68eleqtrrid 2840 . . . 4 (𝜑 → ∅ ∈ (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝐼)))
7017, 13, 37, 63, 64, 15, 66, 18, 69isup 48964 . . 3 (𝜑 → (𝐼(⟨(1st𝐹), (2nd𝐹)⟩(𝐶UP 1 )∅)∅ ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝑥))∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
7161, 62, 703bitr4d 311 . 2 (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼(⟨(1st𝐹), (2nd𝐹)⟩(𝐶UP 1 )∅)∅))
7265up1st2ndb 48970 . 2 (𝜑 → (𝐼(𝐹(𝐶UP 1 )∅)∅ ↔ 𝐼(⟨(1st𝐹), (2nd𝐹)⟩(𝐶UP 1 )∅)∅))
7371, 72bitr4d 282 1 (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼(𝐹(𝐶UP 1 )∅)∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wtru 1540  wcel 2107  ∃!weu 2566  wral 3050  ∃!wreu 3361  c0 4313  {csn 4606  cop 4612  cotp 4614   class class class wbr 5123  cfv 6541  (class class class)co 7413  1st c1st 7994  2nd c2nd 7995  1oc1o 8481  Basecbs 17230  Hom chom 17285  Catccat 17679  Idccid 17680  InitOcinito 17998  SetCatcsetc 18092  Δfunccdiag 18228  UPcup 48957  TermCatctermc 49171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-hom 17298  df-cco 17299  df-cat 17683  df-cid 17684  df-func 17875  df-nat 17963  df-fuc 17964  df-inito 18001  df-setc 18093  df-xpc 18188  df-1stf 18189  df-curf 18230  df-diag 18232  df-up 48958  df-thinc 49119  df-termc 49172
This theorem is referenced by:  isinito2  49197
  Copyright terms: Public domain W3C validator