Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isinito2lem Structured version   Visualization version   GIF version

Theorem isinito2lem 49467
Description: The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025.)
Hypotheses
Ref Expression
isinito2.1 1 = (SetCat‘1o)
isinito2.f 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅)
isinito2lem.c (𝜑𝐶 ∈ Cat)
isinito2lem.i (𝜑𝐼 ∈ (Base‘𝐶))
Assertion
Ref Expression
isinito2lem (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼(𝐹(𝐶 UP 1 )∅)∅))

Proof of Theorem isinito2lem
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reutru 48782 . . . . 5 (∃!𝑓 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥) ↔ ∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)⊤)
2 0ex 5264 . . . . . . . 8 ∅ ∈ V
3 eqeq1 2734 . . . . . . . . 9 (𝑦 = ∅ → (𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ ∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
43reubidv 3374 . . . . . . . 8 (𝑦 = ∅ → (∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ ∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
52, 4ralsn 4647 . . . . . . 7 (∀𝑦 ∈ {∅}∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ ∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅))
6 eqid 2730 . . . . . . . . . . . . . . . . 17 ( 1 Δfunc𝐶) = ( 1 Δfunc𝐶)
7 isinito2.1 . . . . . . . . . . . . . . . . . . . 20 1 = (SetCat‘1o)
8 setc1oterm 49460 . . . . . . . . . . . . . . . . . . . 20 (SetCat‘1o) ∈ TermCat
97, 8eqeltri 2825 . . . . . . . . . . . . . . . . . . 19 1 ∈ TermCat
109a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑1 ∈ TermCat)
1110termccd 49448 . . . . . . . . . . . . . . . . 17 (𝜑1 ∈ Cat)
12 isinito2lem.c . . . . . . . . . . . . . . . . 17 (𝜑𝐶 ∈ Cat)
137setc1obas 49461 . . . . . . . . . . . . . . . . 17 1o = (Base‘ 1 )
14 0lt1o 8470 . . . . . . . . . . . . . . . . . 18 ∅ ∈ 1o
1514a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ∅ ∈ 1o)
16 isinito2.f . . . . . . . . . . . . . . . . 17 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅)
17 eqid 2730 . . . . . . . . . . . . . . . . 17 (Base‘𝐶) = (Base‘𝐶)
18 isinito2lem.i . . . . . . . . . . . . . . . . 17 (𝜑𝐼 ∈ (Base‘𝐶))
196, 11, 12, 13, 15, 16, 17, 18diag11 18210 . . . . . . . . . . . . . . . 16 (𝜑 → ((1st𝐹)‘𝐼) = ∅)
2019adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝐼) = ∅)
2120opeq2d 4846 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨∅, ((1st𝐹)‘𝐼)⟩ = ⟨∅, ∅⟩)
2211adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝐶)) → 1 ∈ Cat)
2312adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
2414a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝐶)) → ∅ ∈ 1o)
25 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
266, 22, 23, 13, 24, 16, 17, 25diag11 18210 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) = ∅)
2721, 26oveq12d 7407 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝐶)) → (⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥)) = (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}∅))
28 snex 5393 . . . . . . . . . . . . . 14 {⟨∅, ∅, ∅⟩} ∈ V
2928ovsn2 48837 . . . . . . . . . . . . 13 (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}∅) = {⟨∅, ∅, ∅⟩}
3027, 29eqtrdi 2781 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝐶)) → (⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥)) = {⟨∅, ∅, ∅⟩})
3130adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → (⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥)) = {⟨∅, ∅, ∅⟩})
329a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 1 ∈ TermCat)
3332termccd 49448 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 1 ∈ Cat)
3412ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 𝐶 ∈ Cat)
3514a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → ∅ ∈ 1o)
3618ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 𝐼 ∈ (Base‘𝐶))
37 eqid 2730 . . . . . . . . . . . . 13 (Hom ‘𝐶) = (Hom ‘𝐶)
38 eqid 2730 . . . . . . . . . . . . 13 (Id‘ 1 ) = (Id‘ 1 )
39 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 𝑥 ∈ (Base‘𝐶))
40 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥))
416, 33, 34, 13, 35, 16, 17, 36, 37, 38, 39, 40diag12 18211 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → ((𝐼(2nd𝐹)𝑥)‘𝑓) = ((Id‘ 1 )‘∅))
427, 38setc1oid 49464 . . . . . . . . . . . 12 ((Id‘ 1 )‘∅) = ∅
4341, 42eqtrdi 2781 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → ((𝐼(2nd𝐹)𝑥)‘𝑓) = ∅)
44 eqidd 2731 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → ∅ = ∅)
4531, 43, 44oveq123d 7410 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) = (∅{⟨∅, ∅, ∅⟩}∅))
462ovsn2 48837 . . . . . . . . . 10 (∅{⟨∅, ∅, ∅⟩}∅) = ∅
4745, 46eqtr2di 2782 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → ∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅))
48 tbtru 1548 . . . . . . . . 9 (∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ (∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ ⊤))
4947, 48sylib 218 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → (∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ ⊤))
5049reubidva 3372 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ ∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)⊤))
515, 50bitr2id 284 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)⊤ ↔ ∀𝑦 ∈ {∅}∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
5226oveq2d 7405 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝑥)) = (∅{⟨∅, ∅, 1o⟩}∅))
53 1oex 8446 . . . . . . . . . 10 1o ∈ V
5453ovsn2 48837 . . . . . . . . 9 (∅{⟨∅, ∅, 1o⟩}∅) = 1o
55 df1o2 8443 . . . . . . . . 9 1o = {∅}
5654, 55eqtri 2753 . . . . . . . 8 (∅{⟨∅, ∅, 1o⟩}∅) = {∅}
5752, 56eqtrdi 2781 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝑥)) = {∅})
5857raleqdv 3301 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∀𝑦 ∈ (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝑥))∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ ∀𝑦 ∈ {∅}∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
5951, 58bitr4d 282 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)⊤ ↔ ∀𝑦 ∈ (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝑥))∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
601, 59bitrid 283 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∃!𝑓 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥) ↔ ∀𝑦 ∈ (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝑥))∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
6160ralbidva 3155 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝑥))∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
6217, 37, 12, 18isinito 17964 . . 3 (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ ∀𝑥 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)))
637setc1ohomfval 49462 . . . 4 {⟨∅, ∅, 1o⟩} = (Hom ‘ 1 )
647setc1ocofval 49463 . . . 4 {⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} = (comp‘ 1 )
657, 16, 12funcsetc1ocl 49465 . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 1 ))
6665func1st2nd 49053 . . . 4 (𝜑 → (1st𝐹)(𝐶 Func 1 )(2nd𝐹))
6719oveq2d 7405 . . . . . 6 (𝜑 → (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝐼)) = (∅{⟨∅, ∅, 1o⟩}∅))
6867, 54eqtrdi 2781 . . . . 5 (𝜑 → (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝐼)) = 1o)
6914, 68eleqtrrid 2836 . . . 4 (𝜑 → ∅ ∈ (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝐼)))
7017, 13, 37, 63, 64, 15, 66, 18, 69isup 49153 . . 3 (𝜑 → (𝐼(⟨(1st𝐹), (2nd𝐹)⟩(𝐶 UP 1 )∅)∅ ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝑥))∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
7161, 62, 703bitr4d 311 . 2 (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼(⟨(1st𝐹), (2nd𝐹)⟩(𝐶 UP 1 )∅)∅))
7265up1st2ndb 49160 . 2 (𝜑 → (𝐼(𝐹(𝐶 UP 1 )∅)∅ ↔ 𝐼(⟨(1st𝐹), (2nd𝐹)⟩(𝐶 UP 1 )∅)∅))
7371, 72bitr4d 282 1 (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼(𝐹(𝐶 UP 1 )∅)∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  ∃!weu 2562  wral 3045  ∃!wreu 3354  c0 4298  {csn 4591  cop 4597  cotp 4599   class class class wbr 5109  cfv 6513  (class class class)co 7389  1st c1st 7968  2nd c2nd 7969  1oc1o 8429  Basecbs 17185  Hom chom 17237  Catccat 17631  Idccid 17632  InitOcinito 17949  SetCatcsetc 18043  Δfunccdiag 18179   UP cup 49146  TermCatctermc 49441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-ot 4600  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-cat 17635  df-cid 17636  df-func 17826  df-nat 17914  df-fuc 17915  df-inito 17952  df-setc 18044  df-xpc 18139  df-1stf 18140  df-curf 18181  df-diag 18183  df-up 49147  df-thinc 49387  df-termc 49442
This theorem is referenced by:  isinito2  49468
  Copyright terms: Public domain W3C validator