| Step | Hyp | Ref
| Expression |
| 1 | | reutru 48697 |
. . . . 5
⊢
(∃!𝑓 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥) ↔ ∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)⊤) |
| 2 | | 0ex 5287 |
. . . . . . . 8
⊢ ∅
∈ V |
| 3 | | eqeq1 2738 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → (𝑦 = (((𝐼(2nd ‘𝐹)𝑥)‘𝑓)(〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥))∅) ↔ ∅ = (((𝐼(2nd ‘𝐹)𝑥)‘𝑓)(〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥))∅))) |
| 4 | 3 | reubidv 3381 |
. . . . . . . 8
⊢ (𝑦 = ∅ → (∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd ‘𝐹)𝑥)‘𝑓)(〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥))∅) ↔ ∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)∅ = (((𝐼(2nd ‘𝐹)𝑥)‘𝑓)(〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥))∅))) |
| 5 | 2, 4 | ralsn 4661 |
. . . . . . 7
⊢
(∀𝑦 ∈
{∅}∃!𝑓 ∈
(𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd ‘𝐹)𝑥)‘𝑓)(〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥))∅) ↔ ∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)∅ = (((𝐼(2nd ‘𝐹)𝑥)‘𝑓)(〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥))∅)) |
| 6 | | eqid 2734 |
. . . . . . . . . . . . . . . . 17
⊢ ( 1
Δfunc𝐶) =
( 1
Δfunc𝐶) |
| 7 | | isinito2.1 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 =
(SetCat‘1o) |
| 8 | | setc1oterm 49189 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(SetCat‘1o) ∈ TermCat |
| 9 | 7, 8 | eqeltri 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
TermCat |
| 10 | 9 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 1 ∈
TermCat) |
| 11 | 10 | termccd 49178 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 1 ∈
Cat) |
| 12 | | isinito2lem.c |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 13 | 7 | setc1obas 49190 |
. . . . . . . . . . . . . . . . 17
⊢
1o = (Base‘ 1 ) |
| 14 | | 0lt1o 8524 |
. . . . . . . . . . . . . . . . . 18
⊢ ∅
∈ 1o |
| 15 | 14 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∅ ∈
1o) |
| 16 | | isinito2.f |
. . . . . . . . . . . . . . . . 17
⊢ 𝐹 = ((1st ‘(
1
Δfunc𝐶))‘∅) |
| 17 | | eqid 2734 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 18 | | isinito2lem.i |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐼 ∈ (Base‘𝐶)) |
| 19 | 6, 11, 12, 13, 15, 16, 17, 18 | diag11 18259 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((1st
‘𝐹)‘𝐼) = ∅) |
| 20 | 19 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐹)‘𝐼) = ∅) |
| 21 | 20 | opeq2d 4860 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 〈∅, ((1st
‘𝐹)‘𝐼)〉 = 〈∅,
∅〉) |
| 22 | 11 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 1 ∈
Cat) |
| 23 | 12 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat) |
| 24 | 14 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ∅ ∈
1o) |
| 25 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
| 26 | 6, 22, 23, 13, 24, 16, 17, 25 | diag11 18259 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐹)‘𝑥) = ∅) |
| 27 | 21, 26 | oveq12d 7431 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥)) = (〈∅,
∅〉{〈〈∅, ∅〉, ∅, {〈∅,
∅, ∅〉}〉}∅)) |
| 28 | | snex 5416 |
. . . . . . . . . . . . . 14
⊢
{〈∅, ∅, ∅〉} ∈ V |
| 29 | 28 | ovsn2 48745 |
. . . . . . . . . . . . 13
⊢
(〈∅, ∅〉{〈〈∅, ∅〉,
∅, {〈∅, ∅, ∅〉}〉}∅) =
{〈∅, ∅, ∅〉} |
| 30 | 27, 29 | eqtrdi 2785 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥)) = {〈∅, ∅,
∅〉}) |
| 31 | 30 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → (〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥)) = {〈∅, ∅,
∅〉}) |
| 32 | 9 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 1 ∈
TermCat) |
| 33 | 32 | termccd 49178 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 1 ∈
Cat) |
| 34 | 12 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 𝐶 ∈ Cat) |
| 35 | 14 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → ∅ ∈
1o) |
| 36 | 18 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 𝐼 ∈ (Base‘𝐶)) |
| 37 | | eqid 2734 |
. . . . . . . . . . . . 13
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 38 | | eqid 2734 |
. . . . . . . . . . . . 13
⊢
(Id‘ 1 ) = (Id‘ 1
) |
| 39 | | simplr 768 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 𝑥 ∈ (Base‘𝐶)) |
| 40 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) |
| 41 | 6, 33, 34, 13, 35, 16, 17, 36, 37, 38, 39, 40 | diag12 18260 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → ((𝐼(2nd ‘𝐹)𝑥)‘𝑓) = ((Id‘ 1
)‘∅)) |
| 42 | 7, 38 | setc1oid 49193 |
. . . . . . . . . . . 12
⊢
((Id‘ 1 )‘∅) =
∅ |
| 43 | 41, 42 | eqtrdi 2785 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → ((𝐼(2nd ‘𝐹)𝑥)‘𝑓) = ∅) |
| 44 | | eqidd 2735 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → ∅ = ∅) |
| 45 | 31, 43, 44 | oveq123d 7434 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → (((𝐼(2nd ‘𝐹)𝑥)‘𝑓)(〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥))∅) = (∅{〈∅, ∅,
∅〉}∅)) |
| 46 | 2 | ovsn2 48745 |
. . . . . . . . . 10
⊢
(∅{〈∅, ∅, ∅〉}∅) =
∅ |
| 47 | 45, 46 | eqtr2di 2786 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → ∅ = (((𝐼(2nd ‘𝐹)𝑥)‘𝑓)(〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥))∅)) |
| 48 | | tbtru 1547 |
. . . . . . . . 9
⊢ (∅
= (((𝐼(2nd
‘𝐹)𝑥)‘𝑓)(〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥))∅) ↔ (∅ = (((𝐼(2nd ‘𝐹)𝑥)‘𝑓)(〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥))∅) ↔ ⊤)) |
| 49 | 47, 48 | sylib 218 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → (∅ = (((𝐼(2nd ‘𝐹)𝑥)‘𝑓)(〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥))∅) ↔ ⊤)) |
| 50 | 49 | reubidva 3379 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)∅ = (((𝐼(2nd ‘𝐹)𝑥)‘𝑓)(〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥))∅) ↔ ∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)⊤)) |
| 51 | 5, 50 | bitr2id 284 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)⊤ ↔ ∀𝑦 ∈ {∅}∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd ‘𝐹)𝑥)‘𝑓)(〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥))∅))) |
| 52 | 26 | oveq2d 7429 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (∅{〈∅, ∅,
1o〉} ((1st ‘𝐹)‘𝑥)) = (∅{〈∅, ∅,
1o〉}∅)) |
| 53 | | 1oex 8498 |
. . . . . . . . . 10
⊢
1o ∈ V |
| 54 | 53 | ovsn2 48745 |
. . . . . . . . 9
⊢
(∅{〈∅, ∅, 1o〉}∅) =
1o |
| 55 | | df1o2 8495 |
. . . . . . . . 9
⊢
1o = {∅} |
| 56 | 54, 55 | eqtri 2757 |
. . . . . . . 8
⊢
(∅{〈∅, ∅, 1o〉}∅) =
{∅} |
| 57 | 52, 56 | eqtrdi 2785 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (∅{〈∅, ∅,
1o〉} ((1st ‘𝐹)‘𝑥)) = {∅}) |
| 58 | 57 | raleqdv 3309 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (∀𝑦 ∈ (∅{〈∅, ∅,
1o〉} ((1st ‘𝐹)‘𝑥))∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd ‘𝐹)𝑥)‘𝑓)(〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥))∅) ↔ ∀𝑦 ∈ {∅}∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd ‘𝐹)𝑥)‘𝑓)(〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥))∅))) |
| 59 | 51, 58 | bitr4d 282 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)⊤ ↔ ∀𝑦 ∈ (∅{〈∅, ∅,
1o〉} ((1st ‘𝐹)‘𝑥))∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd ‘𝐹)𝑥)‘𝑓)(〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥))∅))) |
| 60 | 1, 59 | bitrid 283 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (∃!𝑓 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥) ↔ ∀𝑦 ∈ (∅{〈∅, ∅,
1o〉} ((1st ‘𝐹)‘𝑥))∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd ‘𝐹)𝑥)‘𝑓)(〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥))∅))) |
| 61 | 60 | ralbidva 3163 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (∅{〈∅, ∅,
1o〉} ((1st ‘𝐹)‘𝑥))∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd ‘𝐹)𝑥)‘𝑓)(〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥))∅))) |
| 62 | 17, 37, 12, 18 | isinito 18013 |
. . 3
⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ ∀𝑥 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥))) |
| 63 | 7 | setc1ohomfval 49191 |
. . . 4
⊢
{〈∅, ∅, 1o〉} = (Hom ‘ 1
) |
| 64 | 7 | setc1ocofval 49192 |
. . . 4
⊢
{〈〈∅, ∅〉, ∅, {〈∅, ∅,
∅〉}〉} = (comp‘ 1 ) |
| 65 | 7, 16, 12 | funcsetc1ocl 49194 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 1 )) |
| 66 | 65 | func1st2nd 48936 |
. . . 4
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 1 )(2nd
‘𝐹)) |
| 67 | 19 | oveq2d 7429 |
. . . . . 6
⊢ (𝜑 → (∅{〈∅,
∅, 1o〉} ((1st ‘𝐹)‘𝐼)) = (∅{〈∅, ∅,
1o〉}∅)) |
| 68 | 67, 54 | eqtrdi 2785 |
. . . . 5
⊢ (𝜑 → (∅{〈∅,
∅, 1o〉} ((1st ‘𝐹)‘𝐼)) = 1o) |
| 69 | 14, 68 | eleqtrrid 2840 |
. . . 4
⊢ (𝜑 → ∅ ∈
(∅{〈∅, ∅, 1o〉} ((1st
‘𝐹)‘𝐼))) |
| 70 | 17, 13, 37, 63, 64, 15, 66, 18, 69 | isup 48964 |
. . 3
⊢ (𝜑 → (𝐼(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐶UP 1 )∅)∅ ↔
∀𝑥 ∈
(Base‘𝐶)∀𝑦 ∈ (∅{〈∅,
∅, 1o〉} ((1st ‘𝐹)‘𝑥))∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd ‘𝐹)𝑥)‘𝑓)(〈∅, ((1st
‘𝐹)‘𝐼)〉{〈〈∅,
∅〉, ∅, {〈∅, ∅, ∅〉}〉}
((1st ‘𝐹)‘𝑥))∅))) |
| 71 | 61, 62, 70 | 3bitr4d 311 |
. 2
⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐶UP 1
)∅)∅)) |
| 72 | 65 | up1st2ndb 48970 |
. 2
⊢ (𝜑 → (𝐼(𝐹(𝐶UP 1 )∅)∅ ↔
𝐼(〈(1st
‘𝐹), (2nd
‘𝐹)〉(𝐶UP 1
)∅)∅)) |
| 73 | 71, 72 | bitr4d 282 |
1
⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼(𝐹(𝐶UP 1
)∅)∅)) |