Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isinito2lem Structured version   Visualization version   GIF version

Theorem isinito2lem 49460
Description: The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025.)
Hypotheses
Ref Expression
isinito2.1 1 = (SetCat‘1o)
isinito2.f 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅)
isinito2lem.c (𝜑𝐶 ∈ Cat)
isinito2lem.i (𝜑𝐼 ∈ (Base‘𝐶))
Assertion
Ref Expression
isinito2lem (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼(𝐹(𝐶 UP 1 )∅)∅))

Proof of Theorem isinito2lem
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reutru 48765 . . . . 5 (∃!𝑓 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥) ↔ ∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)⊤)
2 0ex 5257 . . . . . . . 8 ∅ ∈ V
3 eqeq1 2733 . . . . . . . . 9 (𝑦 = ∅ → (𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ ∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
43reubidv 3369 . . . . . . . 8 (𝑦 = ∅ → (∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ ∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
52, 4ralsn 4641 . . . . . . 7 (∀𝑦 ∈ {∅}∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ ∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅))
6 eqid 2729 . . . . . . . . . . . . . . . . 17 ( 1 Δfunc𝐶) = ( 1 Δfunc𝐶)
7 isinito2.1 . . . . . . . . . . . . . . . . . . . 20 1 = (SetCat‘1o)
8 setc1oterm 49453 . . . . . . . . . . . . . . . . . . . 20 (SetCat‘1o) ∈ TermCat
97, 8eqeltri 2824 . . . . . . . . . . . . . . . . . . 19 1 ∈ TermCat
109a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑1 ∈ TermCat)
1110termccd 49441 . . . . . . . . . . . . . . . . 17 (𝜑1 ∈ Cat)
12 isinito2lem.c . . . . . . . . . . . . . . . . 17 (𝜑𝐶 ∈ Cat)
137setc1obas 49454 . . . . . . . . . . . . . . . . 17 1o = (Base‘ 1 )
14 0lt1o 8445 . . . . . . . . . . . . . . . . . 18 ∅ ∈ 1o
1514a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ∅ ∈ 1o)
16 isinito2.f . . . . . . . . . . . . . . . . 17 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅)
17 eqid 2729 . . . . . . . . . . . . . . . . 17 (Base‘𝐶) = (Base‘𝐶)
18 isinito2lem.i . . . . . . . . . . . . . . . . 17 (𝜑𝐼 ∈ (Base‘𝐶))
196, 11, 12, 13, 15, 16, 17, 18diag11 18180 . . . . . . . . . . . . . . . 16 (𝜑 → ((1st𝐹)‘𝐼) = ∅)
2019adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝐼) = ∅)
2120opeq2d 4840 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨∅, ((1st𝐹)‘𝐼)⟩ = ⟨∅, ∅⟩)
2211adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝐶)) → 1 ∈ Cat)
2312adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
2414a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝐶)) → ∅ ∈ 1o)
25 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
266, 22, 23, 13, 24, 16, 17, 25diag11 18180 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) = ∅)
2721, 26oveq12d 7387 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝐶)) → (⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥)) = (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}∅))
28 snex 5386 . . . . . . . . . . . . . 14 {⟨∅, ∅, ∅⟩} ∈ V
2928ovsn2 48822 . . . . . . . . . . . . 13 (⟨∅, ∅⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩}∅) = {⟨∅, ∅, ∅⟩}
3027, 29eqtrdi 2780 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝐶)) → (⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥)) = {⟨∅, ∅, ∅⟩})
3130adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → (⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥)) = {⟨∅, ∅, ∅⟩})
329a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 1 ∈ TermCat)
3332termccd 49441 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 1 ∈ Cat)
3412ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 𝐶 ∈ Cat)
3514a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → ∅ ∈ 1o)
3618ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 𝐼 ∈ (Base‘𝐶))
37 eqid 2729 . . . . . . . . . . . . 13 (Hom ‘𝐶) = (Hom ‘𝐶)
38 eqid 2729 . . . . . . . . . . . . 13 (Id‘ 1 ) = (Id‘ 1 )
39 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 𝑥 ∈ (Base‘𝐶))
40 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥))
416, 33, 34, 13, 35, 16, 17, 36, 37, 38, 39, 40diag12 18181 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → ((𝐼(2nd𝐹)𝑥)‘𝑓) = ((Id‘ 1 )‘∅))
427, 38setc1oid 49457 . . . . . . . . . . . 12 ((Id‘ 1 )‘∅) = ∅
4341, 42eqtrdi 2780 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → ((𝐼(2nd𝐹)𝑥)‘𝑓) = ∅)
44 eqidd 2730 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → ∅ = ∅)
4531, 43, 44oveq123d 7390 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) = (∅{⟨∅, ∅, ∅⟩}∅))
462ovsn2 48822 . . . . . . . . . 10 (∅{⟨∅, ∅, ∅⟩}∅) = ∅
4745, 46eqtr2di 2781 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → ∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅))
48 tbtru 1548 . . . . . . . . 9 (∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ (∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ ⊤))
4947, 48sylib 218 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)) → (∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ ⊤))
5049reubidva 3367 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)∅ = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ ∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)⊤))
515, 50bitr2id 284 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)⊤ ↔ ∀𝑦 ∈ {∅}∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
5226oveq2d 7385 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝑥)) = (∅{⟨∅, ∅, 1o⟩}∅))
53 1oex 8421 . . . . . . . . . 10 1o ∈ V
5453ovsn2 48822 . . . . . . . . 9 (∅{⟨∅, ∅, 1o⟩}∅) = 1o
55 df1o2 8418 . . . . . . . . 9 1o = {∅}
5654, 55eqtri 2752 . . . . . . . 8 (∅{⟨∅, ∅, 1o⟩}∅) = {∅}
5752, 56eqtrdi 2780 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝑥)) = {∅})
5857raleqdv 3296 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∀𝑦 ∈ (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝑥))∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅) ↔ ∀𝑦 ∈ {∅}∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
5951, 58bitr4d 282 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)⊤ ↔ ∀𝑦 ∈ (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝑥))∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
601, 59bitrid 283 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∃!𝑓 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥) ↔ ∀𝑦 ∈ (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝑥))∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
6160ralbidva 3154 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝑥))∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
6217, 37, 12, 18isinito 17934 . . 3 (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ ∀𝑥 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)))
637setc1ohomfval 49455 . . . 4 {⟨∅, ∅, 1o⟩} = (Hom ‘ 1 )
647setc1ocofval 49456 . . . 4 {⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} = (comp‘ 1 )
657, 16, 12funcsetc1ocl 49458 . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 1 ))
6665func1st2nd 49038 . . . 4 (𝜑 → (1st𝐹)(𝐶 Func 1 )(2nd𝐹))
6719oveq2d 7385 . . . . . 6 (𝜑 → (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝐼)) = (∅{⟨∅, ∅, 1o⟩}∅))
6867, 54eqtrdi 2780 . . . . 5 (𝜑 → (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝐼)) = 1o)
6914, 68eleqtrrid 2835 . . . 4 (𝜑 → ∅ ∈ (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝐼)))
7017, 13, 37, 63, 64, 15, 66, 18, 69isup 49142 . . 3 (𝜑 → (𝐼(⟨(1st𝐹), (2nd𝐹)⟩(𝐶 UP 1 )∅)∅ ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (∅{⟨∅, ∅, 1o⟩} ((1st𝐹)‘𝑥))∃!𝑓 ∈ (𝐼(Hom ‘𝐶)𝑥)𝑦 = (((𝐼(2nd𝐹)𝑥)‘𝑓)(⟨∅, ((1st𝐹)‘𝐼)⟩{⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} ((1st𝐹)‘𝑥))∅)))
7161, 62, 703bitr4d 311 . 2 (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼(⟨(1st𝐹), (2nd𝐹)⟩(𝐶 UP 1 )∅)∅))
7265up1st2ndb 49149 . 2 (𝜑 → (𝐼(𝐹(𝐶 UP 1 )∅)∅ ↔ 𝐼(⟨(1st𝐹), (2nd𝐹)⟩(𝐶 UP 1 )∅)∅))
7371, 72bitr4d 282 1 (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼(𝐹(𝐶 UP 1 )∅)∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  ∃!weu 2561  wral 3044  ∃!wreu 3349  c0 4292  {csn 4585  cop 4591  cotp 4593   class class class wbr 5102  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  1oc1o 8404  Basecbs 17155  Hom chom 17207  Catccat 17601  Idccid 17602  InitOcinito 17919  SetCatcsetc 18013  Δfunccdiag 18149   UP cup 49135  TermCatctermc 49434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-cat 17605  df-cid 17606  df-func 17796  df-nat 17884  df-fuc 17885  df-inito 17922  df-setc 18014  df-xpc 18109  df-1stf 18110  df-curf 18151  df-diag 18153  df-up 49136  df-thinc 49380  df-termc 49435
This theorem is referenced by:  isinito2  49461
  Copyright terms: Public domain W3C validator