| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq12df | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed union, deduction version. (Contributed by Thierry Arnoux, 31-Dec-2016.) |
| Ref | Expression |
|---|---|
| iuneq12df.1 | ⊢ Ⅎ𝑥𝜑 |
| iuneq12df.2 | ⊢ Ⅎ𝑥𝐴 |
| iuneq12df.3 | ⊢ Ⅎ𝑥𝐵 |
| iuneq12df.4 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| iuneq12df.5 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| iuneq12df | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq12df.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | iuneq12df.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | iuneq12df.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | iuneq12df.4 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 5 | iuneq12df.5 | . . . . 5 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 6 | 5 | eleq2d 2820 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
| 7 | 1, 2, 3, 4, 6 | rexeqbid 3336 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐷)) |
| 8 | 7 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐷)) |
| 9 | abbi 2800 | . . 3 ⊢ (∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐷) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐷}) | |
| 10 | df-iun 4969 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} | |
| 11 | df-iun 4969 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐵 𝐷 = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐷} | |
| 12 | 9, 10, 11 | 3eqtr4g 2795 | . 2 ⊢ (∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐷) → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
| 13 | 8, 12 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 {cab 2713 Ⅎwnfc 2883 ∃wrex 3060 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-iun 4969 |
| This theorem is referenced by: iunxdif3 5071 iundisjf 32570 aciunf1 32641 measvuni 34245 iuneq2f 38180 |
| Copyright terms: Public domain | W3C validator |