MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuneq12df Structured version   Visualization version   GIF version

Theorem iuneq12df 4947
Description: Equality deduction for indexed union, deduction version. (Contributed by Thierry Arnoux, 31-Dec-2016.)
Hypotheses
Ref Expression
iuneq12df.1 𝑥𝜑
iuneq12df.2 𝑥𝐴
iuneq12df.3 𝑥𝐵
iuneq12df.4 (𝜑𝐴 = 𝐵)
iuneq12df.5 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
iuneq12df (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)

Proof of Theorem iuneq12df
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iuneq12df.1 . . . 4 𝑥𝜑
2 iuneq12df.2 . . . 4 𝑥𝐴
3 iuneq12df.3 . . . 4 𝑥𝐵
4 iuneq12df.4 . . . 4 (𝜑𝐴 = 𝐵)
5 iuneq12df.5 . . . . 5 (𝜑𝐶 = 𝐷)
65eleq2d 2824 . . . 4 (𝜑 → (𝑦𝐶𝑦𝐷))
71, 2, 3, 4, 6rexeqbid 3344 . . 3 (𝜑 → (∃𝑥𝐴 𝑦𝐶 ↔ ∃𝑥𝐵 𝑦𝐷))
87alrimiv 1931 . 2 (𝜑 → ∀𝑦(∃𝑥𝐴 𝑦𝐶 ↔ ∃𝑥𝐵 𝑦𝐷))
9 abbi1 2807 . . 3 (∀𝑦(∃𝑥𝐴 𝑦𝐶 ↔ ∃𝑥𝐵 𝑦𝐷) → {𝑦 ∣ ∃𝑥𝐴 𝑦𝐶} = {𝑦 ∣ ∃𝑥𝐵 𝑦𝐷})
10 df-iun 4923 . . 3 𝑥𝐴 𝐶 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐶}
11 df-iun 4923 . . 3 𝑥𝐵 𝐷 = {𝑦 ∣ ∃𝑥𝐵 𝑦𝐷}
129, 10, 113eqtr4g 2804 . 2 (∀𝑦(∃𝑥𝐴 𝑦𝐶 ↔ ∃𝑥𝐵 𝑦𝐷) → 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
138, 12syl 17 1 (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wnf 1787  wcel 2108  {cab 2715  wnfc 2886  wrex 3064   ciun 4921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rex 3069  df-iun 4923
This theorem is referenced by:  iunxdif3  5020  iundisjf  30829  aciunf1  30902  measvuni  32082  iuneq2f  36241
  Copyright terms: Public domain W3C validator