![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq12df | Structured version Visualization version GIF version |
Description: Equality deduction for indexed union, deduction version. (Contributed by Thierry Arnoux, 31-Dec-2016.) |
Ref | Expression |
---|---|
iuneq12df.1 | ⊢ Ⅎ𝑥𝜑 |
iuneq12df.2 | ⊢ Ⅎ𝑥𝐴 |
iuneq12df.3 | ⊢ Ⅎ𝑥𝐵 |
iuneq12df.4 | ⊢ (𝜑 → 𝐴 = 𝐵) |
iuneq12df.5 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
iuneq12df | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq12df.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | iuneq12df.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | iuneq12df.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | iuneq12df.4 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | iuneq12df.5 | . . . . 5 ⊢ (𝜑 → 𝐶 = 𝐷) | |
6 | 5 | eleq2d 2830 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
7 | 1, 2, 3, 4, 6 | rexeqbid 3365 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐷)) |
8 | 7 | alrimiv 1926 | . 2 ⊢ (𝜑 → ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐷)) |
9 | abbi 2810 | . . 3 ⊢ (∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐷) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐷}) | |
10 | df-iun 5017 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} | |
11 | df-iun 5017 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐵 𝐷 = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐷} | |
12 | 9, 10, 11 | 3eqtr4g 2805 | . 2 ⊢ (∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐷) → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
13 | 8, 12 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 {cab 2717 Ⅎwnfc 2893 ∃wrex 3076 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-iun 5017 |
This theorem is referenced by: iunxdif3 5118 iundisjf 32611 aciunf1 32681 measvuni 34178 iuneq2f 38116 |
Copyright terms: Public domain | W3C validator |