Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rr-elrnmpt3d | Structured version Visualization version GIF version |
Description: Elementhood in an image set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
rr-elrnmpt3d.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
rr-elrnmpt3d.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
rr-elrnmpt3d.3 | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
rr-elrnmpt3d.4 | ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
rr-elrnmpt3d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rr-elrnmpt3d.1 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | rr-elrnmpt3d.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
3 | rr-elrnmpt3d.3 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
4 | rr-elrnmpt3d.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐵 = 𝐷) | |
5 | 4 | eqcomd 2744 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐷 = 𝐵) |
6 | 1, 2, 3, 5 | elrnmptdv 5871 | 1 ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5157 ran crn 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-cnv 5597 df-dm 5599 df-rn 5600 |
This theorem is referenced by: mnurndlem1 41899 |
Copyright terms: Public domain | W3C validator |