Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rr-elrnmpt3d | Structured version Visualization version GIF version |
Description: Elementhood in an image set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
rr-elrnmpt3d.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
rr-elrnmpt3d.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
rr-elrnmpt3d.3 | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
rr-elrnmpt3d.4 | ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
rr-elrnmpt3d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rr-elrnmpt3d.1 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | rr-elrnmpt3d.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
3 | rr-elrnmpt3d.3 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
4 | rr-elrnmpt3d.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐵 = 𝐷) | |
5 | 4 | eqcomd 2745 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐷 = 𝐵) |
6 | 1, 2, 3, 5 | elrnmptdv 5859 | 1 ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ↦ cmpt 5152 ran crn 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5153 df-cnv 5587 df-dm 5589 df-rn 5590 |
This theorem is referenced by: mnurndlem1 41761 |
Copyright terms: Public domain | W3C validator |