Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rr-elrnmpt3d Structured version   Visualization version   GIF version

Theorem rr-elrnmpt3d 41681
Description: Elementhood in an image set. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
rr-elrnmpt3d.1 𝐹 = (𝑥𝐴𝐵)
rr-elrnmpt3d.2 (𝜑𝐶𝐴)
rr-elrnmpt3d.3 (𝜑𝐷𝑉)
rr-elrnmpt3d.4 ((𝜑𝑥 = 𝐶) → 𝐵 = 𝐷)
Assertion
Ref Expression
rr-elrnmpt3d (𝜑𝐷 ∈ ran 𝐹)
Distinct variable groups:   𝑥,𝐷   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem rr-elrnmpt3d
StepHypRef Expression
1 rr-elrnmpt3d.1 . 2 𝐹 = (𝑥𝐴𝐵)
2 rr-elrnmpt3d.2 . 2 (𝜑𝐶𝐴)
3 rr-elrnmpt3d.3 . 2 (𝜑𝐷𝑉)
4 rr-elrnmpt3d.4 . . 3 ((𝜑𝑥 = 𝐶) → 𝐵 = 𝐷)
54eqcomd 2745 . 2 ((𝜑𝑥 = 𝐶) → 𝐷 = 𝐵)
61, 2, 3, 5elrnmptdv 5859 1 (𝜑𝐷 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  cmpt 5152  ran crn 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-mpt 5153  df-cnv 5587  df-dm 5589  df-rn 5590
This theorem is referenced by:  mnurndlem1  41761
  Copyright terms: Public domain W3C validator