![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rr-elrnmpt3d | Structured version Visualization version GIF version |
Description: Elementhood in an image set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
rr-elrnmpt3d.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
rr-elrnmpt3d.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
rr-elrnmpt3d.3 | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
rr-elrnmpt3d.4 | ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
rr-elrnmpt3d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rr-elrnmpt3d.1 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | rr-elrnmpt3d.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
3 | rr-elrnmpt3d.3 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
4 | rr-elrnmpt3d.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐵 = 𝐷) | |
5 | 4 | eqcomd 2739 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐷 = 𝐵) |
6 | 1, 2, 3, 5 | elrnmptdv 5962 | 1 ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ↦ cmpt 5232 ran crn 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-mpt 5233 df-cnv 5685 df-dm 5687 df-rn 5688 |
This theorem is referenced by: mnurndlem1 43040 |
Copyright terms: Public domain | W3C validator |