Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smprngopr Structured version   Visualization version   GIF version

Theorem smprngopr 35822
Description: A simple ring (one whose only ideals are 0 and 𝑅) is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.)
Hypotheses
Ref Expression
smprngpr.1 𝐺 = (1st𝑅)
smprngpr.2 𝐻 = (2nd𝑅)
smprngpr.3 𝑋 = ran 𝐺
smprngpr.4 𝑍 = (GId‘𝐺)
smprngpr.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
smprngopr ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → 𝑅 ∈ PrRing)

Proof of Theorem smprngopr
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1137 . 2 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → 𝑅 ∈ RingOps)
2 smprngpr.1 . . . . 5 𝐺 = (1st𝑅)
3 smprngpr.4 . . . . 5 𝑍 = (GId‘𝐺)
42, 30idl 35795 . . . 4 (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅))
543ad2ant1 1134 . . 3 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → {𝑍} ∈ (Idl‘𝑅))
6 smprngpr.2 . . . . . . . 8 𝐻 = (2nd𝑅)
7 smprngpr.3 . . . . . . . 8 𝑋 = ran 𝐺
8 smprngpr.5 . . . . . . . 8 𝑈 = (GId‘𝐻)
92, 6, 7, 3, 80rngo 35797 . . . . . . 7 (𝑅 ∈ RingOps → (𝑍 = 𝑈𝑋 = {𝑍}))
10 eqcom 2745 . . . . . . 7 (𝑈 = 𝑍𝑍 = 𝑈)
11 eqcom 2745 . . . . . . 7 ({𝑍} = 𝑋𝑋 = {𝑍})
129, 10, 113bitr4g 317 . . . . . 6 (𝑅 ∈ RingOps → (𝑈 = 𝑍 ↔ {𝑍} = 𝑋))
1312necon3bid 2978 . . . . 5 (𝑅 ∈ RingOps → (𝑈𝑍 ↔ {𝑍} ≠ 𝑋))
1413biimpa 480 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → {𝑍} ≠ 𝑋)
15143adant3 1133 . . 3 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → {𝑍} ≠ 𝑋)
16 df-pr 4516 . . . . . . . 8 {{𝑍}, 𝑋} = ({{𝑍}} ∪ {𝑋})
1716eqeq2i 2751 . . . . . . 7 ((Idl‘𝑅) = {{𝑍}, 𝑋} ↔ (Idl‘𝑅) = ({{𝑍}} ∪ {𝑋}))
18 eleq2 2821 . . . . . . . . 9 ((Idl‘𝑅) = ({{𝑍}} ∪ {𝑋}) → (𝑖 ∈ (Idl‘𝑅) ↔ 𝑖 ∈ ({{𝑍}} ∪ {𝑋})))
19 eleq2 2821 . . . . . . . . 9 ((Idl‘𝑅) = ({{𝑍}} ∪ {𝑋}) → (𝑗 ∈ (Idl‘𝑅) ↔ 𝑗 ∈ ({{𝑍}} ∪ {𝑋})))
2018, 19anbi12d 634 . . . . . . . 8 ((Idl‘𝑅) = ({{𝑍}} ∪ {𝑋}) → ((𝑖 ∈ (Idl‘𝑅) ∧ 𝑗 ∈ (Idl‘𝑅)) ↔ (𝑖 ∈ ({{𝑍}} ∪ {𝑋}) ∧ 𝑗 ∈ ({{𝑍}} ∪ {𝑋}))))
21 elun 4037 . . . . . . . . . 10 (𝑖 ∈ ({{𝑍}} ∪ {𝑋}) ↔ (𝑖 ∈ {{𝑍}} ∨ 𝑖 ∈ {𝑋}))
22 velsn 4529 . . . . . . . . . . 11 (𝑖 ∈ {{𝑍}} ↔ 𝑖 = {𝑍})
23 velsn 4529 . . . . . . . . . . 11 (𝑖 ∈ {𝑋} ↔ 𝑖 = 𝑋)
2422, 23orbi12i 914 . . . . . . . . . 10 ((𝑖 ∈ {{𝑍}} ∨ 𝑖 ∈ {𝑋}) ↔ (𝑖 = {𝑍} ∨ 𝑖 = 𝑋))
2521, 24bitri 278 . . . . . . . . 9 (𝑖 ∈ ({{𝑍}} ∪ {𝑋}) ↔ (𝑖 = {𝑍} ∨ 𝑖 = 𝑋))
26 elun 4037 . . . . . . . . . 10 (𝑗 ∈ ({{𝑍}} ∪ {𝑋}) ↔ (𝑗 ∈ {{𝑍}} ∨ 𝑗 ∈ {𝑋}))
27 velsn 4529 . . . . . . . . . . 11 (𝑗 ∈ {{𝑍}} ↔ 𝑗 = {𝑍})
28 velsn 4529 . . . . . . . . . . 11 (𝑗 ∈ {𝑋} ↔ 𝑗 = 𝑋)
2927, 28orbi12i 914 . . . . . . . . . 10 ((𝑗 ∈ {{𝑍}} ∨ 𝑗 ∈ {𝑋}) ↔ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋))
3026, 29bitri 278 . . . . . . . . 9 (𝑗 ∈ ({{𝑍}} ∪ {𝑋}) ↔ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋))
3125, 30anbi12i 630 . . . . . . . 8 ((𝑖 ∈ ({{𝑍}} ∪ {𝑋}) ∧ 𝑗 ∈ ({{𝑍}} ∪ {𝑋})) ↔ ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ∧ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋)))
3220, 31bitrdi 290 . . . . . . 7 ((Idl‘𝑅) = ({{𝑍}} ∪ {𝑋}) → ((𝑖 ∈ (Idl‘𝑅) ∧ 𝑗 ∈ (Idl‘𝑅)) ↔ ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ∧ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋))))
3317, 32sylbi 220 . . . . . 6 ((Idl‘𝑅) = {{𝑍}, 𝑋} → ((𝑖 ∈ (Idl‘𝑅) ∧ 𝑗 ∈ (Idl‘𝑅)) ↔ ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ∧ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋))))
34333ad2ant3 1136 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → ((𝑖 ∈ (Idl‘𝑅) ∧ 𝑗 ∈ (Idl‘𝑅)) ↔ ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ∧ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋))))
35 eqimss 3931 . . . . . . . . . . 11 (𝑖 = {𝑍} → 𝑖 ⊆ {𝑍})
3635orcd 872 . . . . . . . . . 10 (𝑖 = {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))
3736adantr 484 . . . . . . . . 9 ((𝑖 = {𝑍} ∧ 𝑗 = {𝑍}) → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))
3837a1d 25 . . . . . . . 8 ((𝑖 = {𝑍} ∧ 𝑗 = {𝑍}) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})))
3938a1i 11 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → ((𝑖 = {𝑍} ∧ 𝑗 = {𝑍}) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
40 eqimss 3931 . . . . . . . . . . 11 (𝑗 = {𝑍} → 𝑗 ⊆ {𝑍})
4140olcd 873 . . . . . . . . . 10 (𝑗 = {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))
4241adantl 485 . . . . . . . . 9 ((𝑖 = 𝑋𝑗 = {𝑍}) → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))
4342a1d 25 . . . . . . . 8 ((𝑖 = 𝑋𝑗 = {𝑍}) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})))
4443a1i 11 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → ((𝑖 = 𝑋𝑗 = {𝑍}) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
4536adantr 484 . . . . . . . . 9 ((𝑖 = {𝑍} ∧ 𝑗 = 𝑋) → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))
4645a1d 25 . . . . . . . 8 ((𝑖 = {𝑍} ∧ 𝑗 = 𝑋) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})))
4746a1i 11 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → ((𝑖 = {𝑍} ∧ 𝑗 = 𝑋) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
482rneqi 5774 . . . . . . . . . . . . . 14 ran 𝐺 = ran (1st𝑅)
497, 48eqtri 2761 . . . . . . . . . . . . 13 𝑋 = ran (1st𝑅)
5049, 6, 8rngo1cl 35709 . . . . . . . . . . . 12 (𝑅 ∈ RingOps → 𝑈𝑋)
5150adantr 484 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → 𝑈𝑋)
526, 49, 8rngolidm 35707 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ RingOps ∧ 𝑈𝑋) → (𝑈𝐻𝑈) = 𝑈)
5350, 52mpdan 687 . . . . . . . . . . . . . . 15 (𝑅 ∈ RingOps → (𝑈𝐻𝑈) = 𝑈)
5453eleq1d 2817 . . . . . . . . . . . . . 14 (𝑅 ∈ RingOps → ((𝑈𝐻𝑈) ∈ {𝑍} ↔ 𝑈 ∈ {𝑍}))
558fvexi 6682 . . . . . . . . . . . . . . 15 𝑈 ∈ V
5655elsn 4528 . . . . . . . . . . . . . 14 (𝑈 ∈ {𝑍} ↔ 𝑈 = 𝑍)
5754, 56bitrdi 290 . . . . . . . . . . . . 13 (𝑅 ∈ RingOps → ((𝑈𝐻𝑈) ∈ {𝑍} ↔ 𝑈 = 𝑍))
5857necon3bbid 2971 . . . . . . . . . . . 12 (𝑅 ∈ RingOps → (¬ (𝑈𝐻𝑈) ∈ {𝑍} ↔ 𝑈𝑍))
5958biimpar 481 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → ¬ (𝑈𝐻𝑈) ∈ {𝑍})
60 oveq1 7171 . . . . . . . . . . . . . 14 (𝑥 = 𝑈 → (𝑥𝐻𝑦) = (𝑈𝐻𝑦))
6160eleq1d 2817 . . . . . . . . . . . . 13 (𝑥 = 𝑈 → ((𝑥𝐻𝑦) ∈ {𝑍} ↔ (𝑈𝐻𝑦) ∈ {𝑍}))
6261notbid 321 . . . . . . . . . . . 12 (𝑥 = 𝑈 → (¬ (𝑥𝐻𝑦) ∈ {𝑍} ↔ ¬ (𝑈𝐻𝑦) ∈ {𝑍}))
63 oveq2 7172 . . . . . . . . . . . . . 14 (𝑦 = 𝑈 → (𝑈𝐻𝑦) = (𝑈𝐻𝑈))
6463eleq1d 2817 . . . . . . . . . . . . 13 (𝑦 = 𝑈 → ((𝑈𝐻𝑦) ∈ {𝑍} ↔ (𝑈𝐻𝑈) ∈ {𝑍}))
6564notbid 321 . . . . . . . . . . . 12 (𝑦 = 𝑈 → (¬ (𝑈𝐻𝑦) ∈ {𝑍} ↔ ¬ (𝑈𝐻𝑈) ∈ {𝑍}))
6662, 65rspc2ev 3536 . . . . . . . . . . 11 ((𝑈𝑋𝑈𝑋 ∧ ¬ (𝑈𝐻𝑈) ∈ {𝑍}) → ∃𝑥𝑋𝑦𝑋 ¬ (𝑥𝐻𝑦) ∈ {𝑍})
6751, 51, 59, 66syl3anc 1372 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → ∃𝑥𝑋𝑦𝑋 ¬ (𝑥𝐻𝑦) ∈ {𝑍})
68 rexnal2 3169 . . . . . . . . . 10 (∃𝑥𝑋𝑦𝑋 ¬ (𝑥𝐻𝑦) ∈ {𝑍} ↔ ¬ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) ∈ {𝑍})
6967, 68sylib 221 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → ¬ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) ∈ {𝑍})
7069pm2.21d 121 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → (∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})))
71 raleq 3309 . . . . . . . . . 10 (𝑖 = 𝑋 → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} ↔ ∀𝑥𝑋𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍}))
72 raleq 3309 . . . . . . . . . . 11 (𝑗 = 𝑋 → (∀𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} ↔ ∀𝑦𝑋 (𝑥𝐻𝑦) ∈ {𝑍}))
7372ralbidv 3109 . . . . . . . . . 10 (𝑗 = 𝑋 → (∀𝑥𝑋𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) ∈ {𝑍}))
7471, 73sylan9bb 513 . . . . . . . . 9 ((𝑖 = 𝑋𝑗 = 𝑋) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) ∈ {𝑍}))
7574imbi1d 345 . . . . . . . 8 ((𝑖 = 𝑋𝑗 = 𝑋) → ((∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})) ↔ (∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
7670, 75syl5ibrcom 250 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → ((𝑖 = 𝑋𝑗 = 𝑋) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
7739, 44, 47, 76ccased 1038 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → (((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ∧ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋)) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
78773adant3 1133 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → (((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ∧ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋)) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
7934, 78sylbid 243 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → ((𝑖 ∈ (Idl‘𝑅) ∧ 𝑗 ∈ (Idl‘𝑅)) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
8079ralrimivv 3102 . . 3 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → ∀𝑖 ∈ (Idl‘𝑅)∀𝑗 ∈ (Idl‘𝑅)(∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})))
812, 6, 7ispridl 35804 . . . 4 (𝑅 ∈ RingOps → ({𝑍} ∈ (PrIdl‘𝑅) ↔ ({𝑍} ∈ (Idl‘𝑅) ∧ {𝑍} ≠ 𝑋 ∧ ∀𝑖 ∈ (Idl‘𝑅)∀𝑗 ∈ (Idl‘𝑅)(∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})))))
82813ad2ant1 1134 . . 3 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → ({𝑍} ∈ (PrIdl‘𝑅) ↔ ({𝑍} ∈ (Idl‘𝑅) ∧ {𝑍} ≠ 𝑋 ∧ ∀𝑖 ∈ (Idl‘𝑅)∀𝑗 ∈ (Idl‘𝑅)(∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})))))
835, 15, 80, 82mpbir3and 1343 . 2 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → {𝑍} ∈ (PrIdl‘𝑅))
842, 3isprrngo 35820 . 2 (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅)))
851, 83, 84sylanbrc 586 1 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → 𝑅 ∈ PrRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 846  w3a 1088   = wceq 1542  wcel 2113  wne 2934  wral 3053  wrex 3054  cun 3839  wss 3841  {csn 4513  {cpr 4515  ran crn 5520  cfv 6333  (class class class)co 7164  1st c1st 7705  2nd c2nd 7706  GIdcgi 28417  RingOpscrngo 35664  Idlcidl 35777  PrIdlcpridl 35778  PrRingcprrng 35816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-1st 7707  df-2nd 7708  df-grpo 28420  df-gid 28421  df-ginv 28422  df-ablo 28472  df-ass 35613  df-exid 35615  df-mgmOLD 35619  df-sgrOLD 35631  df-mndo 35637  df-rngo 35665  df-idl 35780  df-pridl 35781  df-prrngo 35818
This theorem is referenced by:  divrngpr  35823
  Copyright terms: Public domain W3C validator