Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smprngopr Structured version   Visualization version   GIF version

Theorem smprngopr 38098
Description: A simple ring (one whose only ideals are 0 and 𝑅) is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.)
Hypotheses
Ref Expression
smprngpr.1 𝐺 = (1st𝑅)
smprngpr.2 𝐻 = (2nd𝑅)
smprngpr.3 𝑋 = ran 𝐺
smprngpr.4 𝑍 = (GId‘𝐺)
smprngpr.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
smprngopr ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → 𝑅 ∈ PrRing)

Proof of Theorem smprngopr
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . 2 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → 𝑅 ∈ RingOps)
2 smprngpr.1 . . . . 5 𝐺 = (1st𝑅)
3 smprngpr.4 . . . . 5 𝑍 = (GId‘𝐺)
42, 30idl 38071 . . . 4 (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅))
543ad2ant1 1133 . . 3 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → {𝑍} ∈ (Idl‘𝑅))
6 smprngpr.2 . . . . . . . 8 𝐻 = (2nd𝑅)
7 smprngpr.3 . . . . . . . 8 𝑋 = ran 𝐺
8 smprngpr.5 . . . . . . . 8 𝑈 = (GId‘𝐻)
92, 6, 7, 3, 80rngo 38073 . . . . . . 7 (𝑅 ∈ RingOps → (𝑍 = 𝑈𝑋 = {𝑍}))
10 eqcom 2738 . . . . . . 7 (𝑈 = 𝑍𝑍 = 𝑈)
11 eqcom 2738 . . . . . . 7 ({𝑍} = 𝑋𝑋 = {𝑍})
129, 10, 113bitr4g 314 . . . . . 6 (𝑅 ∈ RingOps → (𝑈 = 𝑍 ↔ {𝑍} = 𝑋))
1312necon3bid 2972 . . . . 5 (𝑅 ∈ RingOps → (𝑈𝑍 ↔ {𝑍} ≠ 𝑋))
1413biimpa 476 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → {𝑍} ≠ 𝑋)
15143adant3 1132 . . 3 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → {𝑍} ≠ 𝑋)
16 df-pr 4579 . . . . . . . 8 {{𝑍}, 𝑋} = ({{𝑍}} ∪ {𝑋})
1716eqeq2i 2744 . . . . . . 7 ((Idl‘𝑅) = {{𝑍}, 𝑋} ↔ (Idl‘𝑅) = ({{𝑍}} ∪ {𝑋}))
18 eleq2 2820 . . . . . . . . 9 ((Idl‘𝑅) = ({{𝑍}} ∪ {𝑋}) → (𝑖 ∈ (Idl‘𝑅) ↔ 𝑖 ∈ ({{𝑍}} ∪ {𝑋})))
19 eleq2 2820 . . . . . . . . 9 ((Idl‘𝑅) = ({{𝑍}} ∪ {𝑋}) → (𝑗 ∈ (Idl‘𝑅) ↔ 𝑗 ∈ ({{𝑍}} ∪ {𝑋})))
2018, 19anbi12d 632 . . . . . . . 8 ((Idl‘𝑅) = ({{𝑍}} ∪ {𝑋}) → ((𝑖 ∈ (Idl‘𝑅) ∧ 𝑗 ∈ (Idl‘𝑅)) ↔ (𝑖 ∈ ({{𝑍}} ∪ {𝑋}) ∧ 𝑗 ∈ ({{𝑍}} ∪ {𝑋}))))
21 elun 4103 . . . . . . . . . 10 (𝑖 ∈ ({{𝑍}} ∪ {𝑋}) ↔ (𝑖 ∈ {{𝑍}} ∨ 𝑖 ∈ {𝑋}))
22 velsn 4592 . . . . . . . . . . 11 (𝑖 ∈ {{𝑍}} ↔ 𝑖 = {𝑍})
23 velsn 4592 . . . . . . . . . . 11 (𝑖 ∈ {𝑋} ↔ 𝑖 = 𝑋)
2422, 23orbi12i 914 . . . . . . . . . 10 ((𝑖 ∈ {{𝑍}} ∨ 𝑖 ∈ {𝑋}) ↔ (𝑖 = {𝑍} ∨ 𝑖 = 𝑋))
2521, 24bitri 275 . . . . . . . . 9 (𝑖 ∈ ({{𝑍}} ∪ {𝑋}) ↔ (𝑖 = {𝑍} ∨ 𝑖 = 𝑋))
26 elun 4103 . . . . . . . . . 10 (𝑗 ∈ ({{𝑍}} ∪ {𝑋}) ↔ (𝑗 ∈ {{𝑍}} ∨ 𝑗 ∈ {𝑋}))
27 velsn 4592 . . . . . . . . . . 11 (𝑗 ∈ {{𝑍}} ↔ 𝑗 = {𝑍})
28 velsn 4592 . . . . . . . . . . 11 (𝑗 ∈ {𝑋} ↔ 𝑗 = 𝑋)
2927, 28orbi12i 914 . . . . . . . . . 10 ((𝑗 ∈ {{𝑍}} ∨ 𝑗 ∈ {𝑋}) ↔ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋))
3026, 29bitri 275 . . . . . . . . 9 (𝑗 ∈ ({{𝑍}} ∪ {𝑋}) ↔ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋))
3125, 30anbi12i 628 . . . . . . . 8 ((𝑖 ∈ ({{𝑍}} ∪ {𝑋}) ∧ 𝑗 ∈ ({{𝑍}} ∪ {𝑋})) ↔ ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ∧ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋)))
3220, 31bitrdi 287 . . . . . . 7 ((Idl‘𝑅) = ({{𝑍}} ∪ {𝑋}) → ((𝑖 ∈ (Idl‘𝑅) ∧ 𝑗 ∈ (Idl‘𝑅)) ↔ ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ∧ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋))))
3317, 32sylbi 217 . . . . . 6 ((Idl‘𝑅) = {{𝑍}, 𝑋} → ((𝑖 ∈ (Idl‘𝑅) ∧ 𝑗 ∈ (Idl‘𝑅)) ↔ ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ∧ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋))))
34333ad2ant3 1135 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → ((𝑖 ∈ (Idl‘𝑅) ∧ 𝑗 ∈ (Idl‘𝑅)) ↔ ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ∧ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋))))
35 eqimss 3993 . . . . . . . . . . 11 (𝑖 = {𝑍} → 𝑖 ⊆ {𝑍})
3635orcd 873 . . . . . . . . . 10 (𝑖 = {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))
3736adantr 480 . . . . . . . . 9 ((𝑖 = {𝑍} ∧ 𝑗 = {𝑍}) → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))
3837a1d 25 . . . . . . . 8 ((𝑖 = {𝑍} ∧ 𝑗 = {𝑍}) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})))
3938a1i 11 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → ((𝑖 = {𝑍} ∧ 𝑗 = {𝑍}) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
40 eqimss 3993 . . . . . . . . . . 11 (𝑗 = {𝑍} → 𝑗 ⊆ {𝑍})
4140olcd 874 . . . . . . . . . 10 (𝑗 = {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))
4241adantl 481 . . . . . . . . 9 ((𝑖 = 𝑋𝑗 = {𝑍}) → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))
4342a1d 25 . . . . . . . 8 ((𝑖 = 𝑋𝑗 = {𝑍}) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})))
4443a1i 11 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → ((𝑖 = 𝑋𝑗 = {𝑍}) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
4536adantr 480 . . . . . . . . 9 ((𝑖 = {𝑍} ∧ 𝑗 = 𝑋) → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))
4645a1d 25 . . . . . . . 8 ((𝑖 = {𝑍} ∧ 𝑗 = 𝑋) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})))
4746a1i 11 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → ((𝑖 = {𝑍} ∧ 𝑗 = 𝑋) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
482rneqi 5877 . . . . . . . . . . . . . 14 ran 𝐺 = ran (1st𝑅)
497, 48eqtri 2754 . . . . . . . . . . . . 13 𝑋 = ran (1st𝑅)
5049, 6, 8rngo1cl 37985 . . . . . . . . . . . 12 (𝑅 ∈ RingOps → 𝑈𝑋)
5150adantr 480 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → 𝑈𝑋)
526, 49, 8rngolidm 37983 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ RingOps ∧ 𝑈𝑋) → (𝑈𝐻𝑈) = 𝑈)
5350, 52mpdan 687 . . . . . . . . . . . . . . 15 (𝑅 ∈ RingOps → (𝑈𝐻𝑈) = 𝑈)
5453eleq1d 2816 . . . . . . . . . . . . . 14 (𝑅 ∈ RingOps → ((𝑈𝐻𝑈) ∈ {𝑍} ↔ 𝑈 ∈ {𝑍}))
558fvexi 6836 . . . . . . . . . . . . . . 15 𝑈 ∈ V
5655elsn 4591 . . . . . . . . . . . . . 14 (𝑈 ∈ {𝑍} ↔ 𝑈 = 𝑍)
5754, 56bitrdi 287 . . . . . . . . . . . . 13 (𝑅 ∈ RingOps → ((𝑈𝐻𝑈) ∈ {𝑍} ↔ 𝑈 = 𝑍))
5857necon3bbid 2965 . . . . . . . . . . . 12 (𝑅 ∈ RingOps → (¬ (𝑈𝐻𝑈) ∈ {𝑍} ↔ 𝑈𝑍))
5958biimpar 477 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → ¬ (𝑈𝐻𝑈) ∈ {𝑍})
60 oveq1 7353 . . . . . . . . . . . . . 14 (𝑥 = 𝑈 → (𝑥𝐻𝑦) = (𝑈𝐻𝑦))
6160eleq1d 2816 . . . . . . . . . . . . 13 (𝑥 = 𝑈 → ((𝑥𝐻𝑦) ∈ {𝑍} ↔ (𝑈𝐻𝑦) ∈ {𝑍}))
6261notbid 318 . . . . . . . . . . . 12 (𝑥 = 𝑈 → (¬ (𝑥𝐻𝑦) ∈ {𝑍} ↔ ¬ (𝑈𝐻𝑦) ∈ {𝑍}))
63 oveq2 7354 . . . . . . . . . . . . . 14 (𝑦 = 𝑈 → (𝑈𝐻𝑦) = (𝑈𝐻𝑈))
6463eleq1d 2816 . . . . . . . . . . . . 13 (𝑦 = 𝑈 → ((𝑈𝐻𝑦) ∈ {𝑍} ↔ (𝑈𝐻𝑈) ∈ {𝑍}))
6564notbid 318 . . . . . . . . . . . 12 (𝑦 = 𝑈 → (¬ (𝑈𝐻𝑦) ∈ {𝑍} ↔ ¬ (𝑈𝐻𝑈) ∈ {𝑍}))
6662, 65rspc2ev 3590 . . . . . . . . . . 11 ((𝑈𝑋𝑈𝑋 ∧ ¬ (𝑈𝐻𝑈) ∈ {𝑍}) → ∃𝑥𝑋𝑦𝑋 ¬ (𝑥𝐻𝑦) ∈ {𝑍})
6751, 51, 59, 66syl3anc 1373 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → ∃𝑥𝑋𝑦𝑋 ¬ (𝑥𝐻𝑦) ∈ {𝑍})
68 rexnal2 3114 . . . . . . . . . 10 (∃𝑥𝑋𝑦𝑋 ¬ (𝑥𝐻𝑦) ∈ {𝑍} ↔ ¬ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) ∈ {𝑍})
6967, 68sylib 218 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → ¬ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) ∈ {𝑍})
7069pm2.21d 121 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → (∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})))
71 raleq 3289 . . . . . . . . . 10 (𝑖 = 𝑋 → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} ↔ ∀𝑥𝑋𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍}))
72 raleq 3289 . . . . . . . . . . 11 (𝑗 = 𝑋 → (∀𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} ↔ ∀𝑦𝑋 (𝑥𝐻𝑦) ∈ {𝑍}))
7372ralbidv 3155 . . . . . . . . . 10 (𝑗 = 𝑋 → (∀𝑥𝑋𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) ∈ {𝑍}))
7471, 73sylan9bb 509 . . . . . . . . 9 ((𝑖 = 𝑋𝑗 = 𝑋) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) ∈ {𝑍}))
7574imbi1d 341 . . . . . . . 8 ((𝑖 = 𝑋𝑗 = 𝑋) → ((∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})) ↔ (∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
7670, 75syl5ibrcom 247 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → ((𝑖 = 𝑋𝑗 = 𝑋) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
7739, 44, 47, 76ccased 1038 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → (((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ∧ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋)) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
78773adant3 1132 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → (((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ∧ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋)) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
7934, 78sylbid 240 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → ((𝑖 ∈ (Idl‘𝑅) ∧ 𝑗 ∈ (Idl‘𝑅)) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
8079ralrimivv 3173 . . 3 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → ∀𝑖 ∈ (Idl‘𝑅)∀𝑗 ∈ (Idl‘𝑅)(∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})))
812, 6, 7ispridl 38080 . . . 4 (𝑅 ∈ RingOps → ({𝑍} ∈ (PrIdl‘𝑅) ↔ ({𝑍} ∈ (Idl‘𝑅) ∧ {𝑍} ≠ 𝑋 ∧ ∀𝑖 ∈ (Idl‘𝑅)∀𝑗 ∈ (Idl‘𝑅)(∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})))))
82813ad2ant1 1133 . . 3 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → ({𝑍} ∈ (PrIdl‘𝑅) ↔ ({𝑍} ∈ (Idl‘𝑅) ∧ {𝑍} ≠ 𝑋 ∧ ∀𝑖 ∈ (Idl‘𝑅)∀𝑗 ∈ (Idl‘𝑅)(∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})))))
835, 15, 80, 82mpbir3and 1343 . 2 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → {𝑍} ∈ (PrIdl‘𝑅))
842, 3isprrngo 38096 . 2 (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅)))
851, 83, 84sylanbrc 583 1 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → 𝑅 ∈ PrRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  cun 3900  wss 3902  {csn 4576  {cpr 4578  ran crn 5617  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  GIdcgi 30468  RingOpscrngo 37940  Idlcidl 38053  PrIdlcpridl 38054  PrRingcprrng 38092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-1st 7921  df-2nd 7922  df-grpo 30471  df-gid 30472  df-ginv 30473  df-ablo 30523  df-ass 37889  df-exid 37891  df-mgmOLD 37895  df-sgrOLD 37907  df-mndo 37913  df-rngo 37941  df-idl 38056  df-pridl 38057  df-prrngo 38094
This theorem is referenced by:  divrngpr  38099
  Copyright terms: Public domain W3C validator