Step | Hyp | Ref
| Expression |
1 | | simpl1 1189 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → 𝑋 ∈ 𝐵) |
2 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑋 → (𝑥 ⚬ 𝑦) = (𝑋 ⚬ 𝑦)) |
3 | 2 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = ((𝑋 ⚬ 𝑦) ⚬ 𝑧)) |
4 | | oveq1 7262 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (𝑥 ⚬ (𝑦 ⚬ 𝑧)) = (𝑋 ⚬ (𝑦 ⚬ 𝑧))) |
5 | 3, 4 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) ↔ ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)))) |
6 | 5 | notbid 317 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (¬ ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) ↔ ¬ ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)))) |
7 | 6 | rexbidv 3225 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (∃𝑧 ∈ 𝐵 ¬ ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) ↔ ∃𝑧 ∈ 𝐵 ¬ ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)))) |
8 | 7 | rexbidv 3225 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 ¬ ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 ¬ ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)))) |
9 | 8 | adantl 481 |
. . . . . . 7
⊢ ((((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) ∧ 𝑥 = 𝑋) → (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 ¬ ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 ¬ ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)))) |
10 | | simpl2 1190 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → 𝑌 ∈ 𝐵) |
11 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑌 → (𝑋 ⚬ 𝑦) = (𝑋 ⚬ 𝑌)) |
12 | 11 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑌 → ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = ((𝑋 ⚬ 𝑌) ⚬ 𝑧)) |
13 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑌 → (𝑦 ⚬ 𝑧) = (𝑌 ⚬ 𝑧)) |
14 | 13 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑌 → (𝑋 ⚬ (𝑦 ⚬ 𝑧)) = (𝑋 ⚬ (𝑌 ⚬ 𝑧))) |
15 | 12, 14 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑌 → (((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)) ↔ ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧)))) |
16 | 15 | notbid 317 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑌 → (¬ ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)) ↔ ¬ ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧)))) |
17 | 16 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) ∧ 𝑦 = 𝑌) → (¬ ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)) ↔ ¬ ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧)))) |
18 | 17 | rexbidv 3225 |
. . . . . . . 8
⊢ ((((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) ∧ 𝑦 = 𝑌) → (∃𝑧 ∈ 𝐵 ¬ ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧)) ↔ ∃𝑧 ∈ 𝐵 ¬ ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧)))) |
19 | | simpl3 1191 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → 𝑍 ∈ 𝐵) |
20 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑍 → ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = ((𝑋 ⚬ 𝑌) ⚬ 𝑍)) |
21 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑍 → (𝑌 ⚬ 𝑧) = (𝑌 ⚬ 𝑍)) |
22 | 21 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑍 → (𝑋 ⚬ (𝑌 ⚬ 𝑧)) = (𝑋 ⚬ (𝑌 ⚬ 𝑍))) |
23 | 20, 22 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑍 → (((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧)) ↔ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍)))) |
24 | 23 | notbid 317 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑍 → (¬ ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧)) ↔ ¬ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍)))) |
25 | 24 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) ∧ 𝑧 = 𝑍) → (¬ ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧)) ↔ ¬ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍)))) |
26 | | neneq 2948 |
. . . . . . . . . 10
⊢ (((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍)) → ¬ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍))) |
27 | 26 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → ¬ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍))) |
28 | 19, 25, 27 | rspcedvd 3555 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → ∃𝑧 ∈ 𝐵 ¬ ((𝑋 ⚬ 𝑌) ⚬ 𝑧) = (𝑋 ⚬ (𝑌 ⚬ 𝑧))) |
29 | 10, 18, 28 | rspcedvd 3555 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 ¬ ((𝑋 ⚬ 𝑦) ⚬ 𝑧) = (𝑋 ⚬ (𝑦 ⚬ 𝑧))) |
30 | 1, 9, 29 | rspcedvd 3555 |
. . . . . 6
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 ¬ ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) |
31 | | rexnal 3165 |
. . . . . . . 8
⊢
(∃𝑧 ∈
𝐵 ¬ ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) ↔ ¬ ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) |
32 | 31 | 2rexbii 3178 |
. . . . . . 7
⊢
(∃𝑥 ∈
𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 ¬ ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) |
33 | | rexnal2 3186 |
. . . . . . 7
⊢
(∃𝑥 ∈
𝐵 ∃𝑦 ∈ 𝐵 ¬ ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) ↔ ¬ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) |
34 | 32, 33 | bitr2i 275 |
. . . . . 6
⊢ (¬
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 ¬ ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) |
35 | 30, 34 | sylibr 233 |
. . . . 5
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → ¬ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) |
36 | 35 | intnand 488 |
. . . 4
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → ¬ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
37 | | issgrpn0.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑀) |
38 | | issgrpn0.o |
. . . . 5
⊢ ⚬ =
(+g‘𝑀) |
39 | 37, 38 | issgrp 18291 |
. . . 4
⊢ (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
40 | 36, 39 | sylnibr 328 |
. . 3
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → ¬ 𝑀 ∈ Smgrp) |
41 | | df-nel 3049 |
. . 3
⊢ (𝑀 ∉ Smgrp ↔ ¬
𝑀 ∈
Smgrp) |
42 | 40, 41 | sylibr 233 |
. 2
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍))) → 𝑀 ∉ Smgrp) |
43 | 42 | ex 412 |
1
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍)) → 𝑀 ∉ Smgrp)) |