Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rmoi2 | Structured version Visualization version GIF version |
Description: Consequence of "restricted at most one". (Contributed by Thierry Arnoux, 9-Dec-2019.) |
Ref | Expression |
---|---|
rmoi2.1 | ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜒)) |
rmoi2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
rmoi2.3 | ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 𝜓) |
rmoi2.4 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
rmoi2.5 | ⊢ (𝜑 → 𝜓) |
rmoi2.6 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
rmoi2 | ⊢ (𝜑 → 𝑥 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmoi2.6 | . 2 ⊢ (𝜑 → 𝜒) | |
2 | rmoi2.1 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | rmoi2.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
4 | rmoi2.3 | . . 3 ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 𝜓) | |
5 | rmoi2.4 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
6 | rmoi2.5 | . . 3 ⊢ (𝜑 → 𝜓) | |
7 | 2, 3, 4, 5, 6 | rmob2 3836 | . 2 ⊢ (𝜑 → (𝑥 = 𝐵 ↔ 𝜒)) |
8 | 1, 7 | mpbird 256 | 1 ⊢ (𝜑 → 𝑥 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∃*wrmo 3348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-clab 2714 df-cleq 2728 df-clel 2814 df-rmo 3349 df-v 3443 |
This theorem is referenced by: lmieu 27434 |
Copyright terms: Public domain | W3C validator |