MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmieu Structured version   Visualization version   GIF version

Theorem lmieu 28608
Description: Uniqueness of the line mirror point. Theorem 10.2 of [Schwabhauser] p. 88. (Contributed by Thierry Arnoux, 1-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
lmieu.l 𝐿 = (LineG‘𝐺)
lmieu.1 (𝜑𝐷 ∈ ran 𝐿)
lmieu.a (𝜑𝐴𝑃)
Assertion
Ref Expression
lmieu (𝜑 → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
Distinct variable groups:   𝐺,𝑏   𝑃,𝑏   𝜑,𝑏   𝐴,𝑏   𝐷,𝑏   𝐿,𝑏
Allowed substitution hints:   𝐼(𝑏)   (𝑏)

Proof of Theorem lmieu
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lmieu.a . . . 4 (𝜑𝐴𝑃)
21adantr 479 . . 3 ((𝜑𝐴𝐷) → 𝐴𝑃)
3 simpr 483 . . . . . . . . . . . 12 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → ¬ 𝐴 = 𝑏)
4 eqidd 2729 . . . . . . . . . . . . . . 15 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → (𝐴(midG‘𝐺)𝑏) = (𝐴(midG‘𝐺)𝑏))
5 ismid.p . . . . . . . . . . . . . . . 16 𝑃 = (Base‘𝐺)
6 ismid.d . . . . . . . . . . . . . . . 16 = (dist‘𝐺)
7 ismid.i . . . . . . . . . . . . . . . 16 𝐼 = (Itv‘𝐺)
8 ismid.g . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ∈ TarskiG)
98ad4antr 730 . . . . . . . . . . . . . . . 16 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝐺 ∈ TarskiG)
10 ismid.1 . . . . . . . . . . . . . . . . 17 (𝜑𝐺DimTarskiG≥2)
1110ad4antr 730 . . . . . . . . . . . . . . . 16 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝐺DimTarskiG≥2)
122ad3antrrr 728 . . . . . . . . . . . . . . . 16 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝐴𝑃)
13 simpllr 774 . . . . . . . . . . . . . . . 16 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝑏𝑃)
14 eqid 2728 . . . . . . . . . . . . . . . 16 (pInvG‘𝐺) = (pInvG‘𝐺)
155, 6, 7, 9, 11, 12, 13midcl 28601 . . . . . . . . . . . . . . . 16 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → (𝐴(midG‘𝐺)𝑏) ∈ 𝑃)
165, 6, 7, 9, 11, 12, 13, 14, 15ismidb 28602 . . . . . . . . . . . . . . 15 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → (𝑏 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝑏))‘𝐴) ↔ (𝐴(midG‘𝐺)𝑏) = (𝐴(midG‘𝐺)𝑏)))
174, 16mpbird 256 . . . . . . . . . . . . . 14 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝑏 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝑏))‘𝐴))
1817adantr 479 . . . . . . . . . . . . 13 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝑏 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝑏))‘𝐴))
19 lmieu.l . . . . . . . . . . . . . . . 16 𝐿 = (LineG‘𝐺)
209adantr 479 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐺 ∈ TarskiG)
21 lmieu.1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 ∈ ran 𝐿)
2221ad4antr 730 . . . . . . . . . . . . . . . . 17 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝐷 ∈ ran 𝐿)
2322adantr 479 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐷 ∈ ran 𝐿)
2412adantr 479 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐴𝑃)
2513adantr 479 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝑏𝑃)
263neqned 2944 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝐴𝑏)
2726adantr 479 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐴𝑏)
285, 7, 19, 20, 24, 25, 27tgelrnln 28454 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → (𝐴𝐿𝑏) ∈ ran 𝐿)
29 simpr 483 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐷 ≠ (𝐴𝐿𝑏))
30 simp-4r 782 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝐴𝐷)
3130adantr 479 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐴𝐷)
325, 7, 19, 20, 24, 25, 27tglinerflx1 28457 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐴 ∈ (𝐴𝐿𝑏))
3331, 32elind 4196 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐴 ∈ (𝐷 ∩ (𝐴𝐿𝑏)))
34 simpllr 774 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → (𝐴(midG‘𝐺)𝑏) ∈ 𝐷)
355, 6, 7, 9, 11, 12, 13midbtwn 28603 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → (𝐴(midG‘𝐺)𝑏) ∈ (𝐴𝐼𝑏))
365, 7, 19, 9, 12, 13, 15, 26, 35btwnlng1 28443 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → (𝐴(midG‘𝐺)𝑏) ∈ (𝐴𝐿𝑏))
3736adantr 479 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → (𝐴(midG‘𝐺)𝑏) ∈ (𝐴𝐿𝑏))
3834, 37elind 4196 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → (𝐴(midG‘𝐺)𝑏) ∈ (𝐷 ∩ (𝐴𝐿𝑏)))
395, 7, 19, 20, 23, 28, 29, 33, 38tglineineq 28467 . . . . . . . . . . . . . . 15 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐴 = (𝐴(midG‘𝐺)𝑏))
4039fveq2d 6906 . . . . . . . . . . . . . 14 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → ((pInvG‘𝐺)‘𝐴) = ((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝑏)))
4140fveq1d 6904 . . . . . . . . . . . . 13 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → (((pInvG‘𝐺)‘𝐴)‘𝐴) = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝑏))‘𝐴))
42 eqid 2728 . . . . . . . . . . . . . 14 ((pInvG‘𝐺)‘𝐴) = ((pInvG‘𝐺)‘𝐴)
435, 6, 7, 19, 14, 20, 24, 42mircinv 28492 . . . . . . . . . . . . 13 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → (((pInvG‘𝐺)‘𝐴)‘𝐴) = 𝐴)
4418, 41, 433eqtr2rd 2775 . . . . . . . . . . . 12 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐴 = 𝑏)
453, 44mtand 814 . . . . . . . . . . 11 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → ¬ 𝐷 ≠ (𝐴𝐿𝑏))
468ad5antr 732 . . . . . . . . . . . 12 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)) → 𝐺 ∈ TarskiG)
4721ad5antr 732 . . . . . . . . . . . 12 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)) → 𝐷 ∈ ran 𝐿)
48 nne 2941 . . . . . . . . . . . . . . 15 𝐷 ≠ (𝐴𝐿𝑏) ↔ 𝐷 = (𝐴𝐿𝑏))
4945, 48sylib 217 . . . . . . . . . . . . . 14 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝐷 = (𝐴𝐿𝑏))
5049adantr 479 . . . . . . . . . . . . 13 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)) → 𝐷 = (𝐴𝐿𝑏))
5150, 47eqeltrrd 2830 . . . . . . . . . . . 12 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)) → (𝐴𝐿𝑏) ∈ ran 𝐿)
52 simpr 483 . . . . . . . . . . . 12 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)) → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏))
535, 6, 7, 19, 46, 47, 51, 52perpneq 28538 . . . . . . . . . . 11 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)) → 𝐷 ≠ (𝐴𝐿𝑏))
5445, 53mtand 814 . . . . . . . . . 10 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → ¬ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏))
5554ex 411 . . . . . . . . 9 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) → (¬ 𝐴 = 𝑏 → ¬ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)))
5655con4d 115 . . . . . . . 8 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) → (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) → 𝐴 = 𝑏))
57 idd 24 . . . . . . . 8 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) → (𝐴 = 𝑏𝐴 = 𝑏))
5856, 57jaod 857 . . . . . . 7 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) → ((𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏) → 𝐴 = 𝑏))
5958impr 453 . . . . . 6 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝐴 = 𝑏)
6059eqcomd 2734 . . . . 5 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝑏 = 𝐴)
61 simpr 483 . . . . . . . . 9 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → 𝑏 = 𝐴)
6261oveq2d 7442 . . . . . . . 8 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → (𝐴(midG‘𝐺)𝑏) = (𝐴(midG‘𝐺)𝐴))
635, 6, 7, 8, 10, 1, 1midid 28605 . . . . . . . . 9 (𝜑 → (𝐴(midG‘𝐺)𝐴) = 𝐴)
6463ad3antrrr 728 . . . . . . . 8 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → (𝐴(midG‘𝐺)𝐴) = 𝐴)
6562, 64eqtrd 2768 . . . . . . 7 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → (𝐴(midG‘𝐺)𝑏) = 𝐴)
66 simpllr 774 . . . . . . 7 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → 𝐴𝐷)
6765, 66eqeltrd 2829 . . . . . 6 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → (𝐴(midG‘𝐺)𝑏) ∈ 𝐷)
6861eqcomd 2734 . . . . . . 7 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → 𝐴 = 𝑏)
6968olcd 872 . . . . . 6 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))
7067, 69jca 510 . . . . 5 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
7160, 70impbida 799 . . . 4 (((𝜑𝐴𝐷) ∧ 𝑏𝑃) → (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ 𝑏 = 𝐴))
7271ralrimiva 3143 . . 3 ((𝜑𝐴𝐷) → ∀𝑏𝑃 (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ 𝑏 = 𝐴))
73 reu6i 3725 . . 3 ((𝐴𝑃 ∧ ∀𝑏𝑃 (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ 𝑏 = 𝐴)) → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
742, 72, 73syl2anc 582 . 2 ((𝜑𝐴𝐷) → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
758adantr 479 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐺 ∈ TarskiG)
7675ad2antrr 724 . . . . 5 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → 𝐺 ∈ TarskiG)
7721adantr 479 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐷 ∈ ran 𝐿)
7877ad2antrr 724 . . . . . 6 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → 𝐷 ∈ ran 𝐿)
79 simplr 767 . . . . . 6 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → 𝑥𝐷)
805, 19, 7, 76, 78, 79tglnpt 28373 . . . . 5 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → 𝑥𝑃)
81 eqid 2728 . . . . 5 ((pInvG‘𝐺)‘𝑥) = ((pInvG‘𝐺)‘𝑥)
821adantr 479 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴𝑃)
8382ad2antrr 724 . . . . 5 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → 𝐴𝑃)
845, 6, 7, 19, 14, 76, 80, 81, 83mircl 28485 . . . 4 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → (((pInvG‘𝐺)‘𝑥)‘𝐴) ∈ 𝑃)
85 oveq2 7434 . . . . . . . . . 10 (𝑥 = (𝐴(midG‘𝐺)𝑏) → (𝐴𝐿𝑥) = (𝐴𝐿(𝐴(midG‘𝐺)𝑏)))
8685breq1d 5162 . . . . . . . . 9 (𝑥 = (𝐴(midG‘𝐺)𝑏) → ((𝐴𝐿𝑥)(⟂G‘𝐺)𝐷 ↔ (𝐴𝐿(𝐴(midG‘𝐺)𝑏))(⟂G‘𝐺)𝐷))
87 simprl 769 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴(midG‘𝐺)𝑏) ∈ 𝐷)
88 simpr 483 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐴𝐷) → ¬ 𝐴𝐷)
895, 6, 7, 19, 75, 77, 82, 88foot 28546 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐴𝐷) → ∃!𝑥𝐷 (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷)
90 reurmo 3377 . . . . . . . . . . 11 (∃!𝑥𝐷 (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷 → ∃*𝑥𝐷 (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷)
9189, 90syl 17 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴𝐷) → ∃*𝑥𝐷 (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷)
9291ad4antr 730 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → ∃*𝑥𝐷 (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷)
9379ad2antrr 724 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝑥𝐷)
94 simpllr 774 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷)
9576ad2antrr 724 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝐺 ∈ TarskiG)
9683ad2antrr 724 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝐴𝑃)
97 simplr 767 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝑏𝑃)
9810ad5antr 732 . . . . . . . . . . . . 13 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝐺DimTarskiG≥2)
995, 6, 7, 95, 98, 96, 97midcl 28601 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴(midG‘𝐺)𝑏) ∈ 𝑃)
1005, 6, 7, 95, 98, 96, 97midbtwn 28603 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴(midG‘𝐺)𝑏) ∈ (𝐴𝐼𝑏))
10188ad4antr 730 . . . . . . . . . . . . 13 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → ¬ 𝐴𝐷)
102 nelne2 3037 . . . . . . . . . . . . 13 (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ ¬ 𝐴𝐷) → (𝐴(midG‘𝐺)𝑏) ≠ 𝐴)
10387, 101, 102syl2anc 582 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴(midG‘𝐺)𝑏) ≠ 𝐴)
1045, 6, 7, 95, 96, 99, 97, 100, 103tgbtwnne 28314 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝐴𝑏)
1055, 7, 19, 95, 96, 97, 99, 104, 100btwnlng1 28443 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴(midG‘𝐺)𝑏) ∈ (𝐴𝐿𝑏))
1065, 7, 19, 95, 96, 97, 104, 99, 103, 105tglineelsb2 28456 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴𝐿𝑏) = (𝐴𝐿(𝐴(midG‘𝐺)𝑏)))
10778ad2antrr 724 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝐷 ∈ ran 𝐿)
1085, 7, 19, 95, 96, 97, 104tgelrnln 28454 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴𝐿𝑏) ∈ ran 𝐿)
109104neneqd 2942 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → ¬ 𝐴 = 𝑏)
110 simprr 771 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))
111110orcomd 869 . . . . . . . . . . . . 13 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴 = 𝑏𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)))
112111ord 862 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (¬ 𝐴 = 𝑏𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)))
113109, 112mpd 15 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏))
1145, 6, 7, 19, 95, 107, 108, 113perpcom 28537 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴𝐿𝑏)(⟂G‘𝐺)𝐷)
115106, 114eqbrtrrd 5176 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴𝐿(𝐴(midG‘𝐺)𝑏))(⟂G‘𝐺)𝐷)
11686, 87, 92, 93, 94, 115rmoi2 3888 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝑥 = (𝐴(midG‘𝐺)𝑏))
117116eqcomd 2734 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴(midG‘𝐺)𝑏) = 𝑥)
11880ad2antrr 724 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝑥𝑃)
1195, 6, 7, 95, 98, 96, 97, 14, 118ismidb 28602 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴) ↔ (𝐴(midG‘𝐺)𝑏) = 𝑥))
120117, 119mpbird 256 . . . . . 6 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴))
121 simpr 483 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴))
12276ad2antrr 724 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → 𝐺 ∈ TarskiG)
12310ad5antr 732 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → 𝐺DimTarskiG≥2)
12483ad2antrr 724 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → 𝐴𝑃)
125 simplr 767 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → 𝑏𝑃)
12680ad2antrr 724 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → 𝑥𝑃)
1275, 6, 7, 122, 123, 124, 125, 14, 126ismidb 28602 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → (𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴) ↔ (𝐴(midG‘𝐺)𝑏) = 𝑥))
128121, 127mpbid 231 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → (𝐴(midG‘𝐺)𝑏) = 𝑥)
12979ad2antrr 724 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → 𝑥𝐷)
130128, 129eqeltrd 2829 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → (𝐴(midG‘𝐺)𝑏) ∈ 𝐷)
131122adantr 479 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝐺 ∈ TarskiG)
132 simp-4r 782 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷)
13319, 131, 132perpln1 28534 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → (𝐴𝐿𝑥) ∈ ran 𝐿)
13478ad3antrrr 728 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝐷 ∈ ran 𝐿)
1355, 6, 7, 19, 131, 133, 134, 132perpcom 28537 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑥))
136124adantr 479 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝐴𝑃)
137126adantr 479 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑥𝑃)
1385, 7, 19, 131, 136, 137, 133tglnne 28452 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝐴𝑥)
139 simpllr 774 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑏𝑃)
140 simpr 483 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝐴𝑏)
141140necomd 2993 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑏𝐴)
1425, 6, 7, 19, 14, 131, 137, 81, 136mirbtwn 28482 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑥 ∈ ((((pInvG‘𝐺)‘𝑥)‘𝐴)𝐼𝐴))
143 simplr 767 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴))
144143oveq1d 7441 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → (𝑏𝐼𝐴) = ((((pInvG‘𝐺)‘𝑥)‘𝐴)𝐼𝐴))
145142, 144eleqtrrd 2832 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑥 ∈ (𝑏𝐼𝐴))
1465, 7, 19, 131, 139, 136, 137, 141, 145btwnlng1 28443 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑥 ∈ (𝑏𝐿𝐴))
1475, 7, 19, 131, 136, 137, 139, 138, 146, 141lnrot1 28447 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑏 ∈ (𝐴𝐿𝑥))
1485, 7, 19, 131, 136, 137, 138, 139, 141, 147tglineelsb2 28456 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → (𝐴𝐿𝑥) = (𝐴𝐿𝑏))
149135, 148breqtrd 5178 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏))
150149ex 411 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → (𝐴𝑏𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)))
151150necon1bd 2955 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → (¬ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) → 𝐴 = 𝑏))
152151orrd 861 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))
153130, 152jca 510 . . . . . 6 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
154120, 153impbida 799 . . . . 5 (((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) → (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)))
155154ralrimiva 3143 . . . 4 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → ∀𝑏𝑃 (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)))
156 reu6i 3725 . . . 4 (((((pInvG‘𝐺)‘𝑥)‘𝐴) ∈ 𝑃 ∧ ∀𝑏𝑃 (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴))) → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
15784, 155, 156syl2anc 582 . . 3 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
1585, 6, 7, 19, 75, 77, 82, 88footex 28545 . . 3 ((𝜑 ∧ ¬ 𝐴𝐷) → ∃𝑥𝐷 (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷)
159157, 158r19.29a 3159 . 2 ((𝜑 ∧ ¬ 𝐴𝐷) → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
16074, 159pm2.61dan 811 1 (𝜑 → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2937  wral 3058  ∃!wreu 3372  ∃*wrmo 3373   class class class wbr 5152  ran crn 5683  cfv 6553  (class class class)co 7426  2c2 12305  Basecbs 17187  distcds 17249  TarskiGcstrkg 28251  DimTarskiGcstrkgld 28255  Itvcitv 28257  LineGclng 28258  pInvGcmir 28476  ⟂Gcperpg 28519  midGcmid 28596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-oadd 8497  df-er 8731  df-map 8853  df-pm 8854  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-dju 9932  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-fz 13525  df-fzo 13668  df-hash 14330  df-word 14505  df-concat 14561  df-s1 14586  df-s2 14839  df-s3 14840  df-trkgc 28272  df-trkgb 28273  df-trkgcb 28274  df-trkgld 28276  df-trkg 28277  df-cgrg 28335  df-leg 28407  df-mir 28477  df-rag 28518  df-perpg 28520  df-mid 28598
This theorem is referenced by:  lmif  28609  islmib  28611
  Copyright terms: Public domain W3C validator