MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmieu Structured version   Visualization version   GIF version

Theorem lmieu 28747
Description: Uniqueness of the line mirror point. Theorem 10.2 of [Schwabhauser] p. 88. (Contributed by Thierry Arnoux, 1-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
lmieu.l 𝐿 = (LineG‘𝐺)
lmieu.1 (𝜑𝐷 ∈ ran 𝐿)
lmieu.a (𝜑𝐴𝑃)
Assertion
Ref Expression
lmieu (𝜑 → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
Distinct variable groups:   𝐺,𝑏   𝑃,𝑏   𝜑,𝑏   𝐴,𝑏   𝐷,𝑏   𝐿,𝑏
Allowed substitution hints:   𝐼(𝑏)   (𝑏)

Proof of Theorem lmieu
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lmieu.a . . . 4 (𝜑𝐴𝑃)
21adantr 480 . . 3 ((𝜑𝐴𝐷) → 𝐴𝑃)
3 simpr 484 . . . . . . . . . . . 12 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → ¬ 𝐴 = 𝑏)
4 eqidd 2730 . . . . . . . . . . . . . . 15 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → (𝐴(midG‘𝐺)𝑏) = (𝐴(midG‘𝐺)𝑏))
5 ismid.p . . . . . . . . . . . . . . . 16 𝑃 = (Base‘𝐺)
6 ismid.d . . . . . . . . . . . . . . . 16 = (dist‘𝐺)
7 ismid.i . . . . . . . . . . . . . . . 16 𝐼 = (Itv‘𝐺)
8 ismid.g . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ∈ TarskiG)
98ad4antr 732 . . . . . . . . . . . . . . . 16 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝐺 ∈ TarskiG)
10 ismid.1 . . . . . . . . . . . . . . . . 17 (𝜑𝐺DimTarskiG≥2)
1110ad4antr 732 . . . . . . . . . . . . . . . 16 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝐺DimTarskiG≥2)
122ad3antrrr 730 . . . . . . . . . . . . . . . 16 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝐴𝑃)
13 simpllr 775 . . . . . . . . . . . . . . . 16 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝑏𝑃)
14 eqid 2729 . . . . . . . . . . . . . . . 16 (pInvG‘𝐺) = (pInvG‘𝐺)
155, 6, 7, 9, 11, 12, 13midcl 28740 . . . . . . . . . . . . . . . 16 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → (𝐴(midG‘𝐺)𝑏) ∈ 𝑃)
165, 6, 7, 9, 11, 12, 13, 14, 15ismidb 28741 . . . . . . . . . . . . . . 15 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → (𝑏 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝑏))‘𝐴) ↔ (𝐴(midG‘𝐺)𝑏) = (𝐴(midG‘𝐺)𝑏)))
174, 16mpbird 257 . . . . . . . . . . . . . 14 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝑏 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝑏))‘𝐴))
1817adantr 480 . . . . . . . . . . . . 13 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝑏 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝑏))‘𝐴))
19 lmieu.l . . . . . . . . . . . . . . . 16 𝐿 = (LineG‘𝐺)
209adantr 480 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐺 ∈ TarskiG)
21 lmieu.1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 ∈ ran 𝐿)
2221ad4antr 732 . . . . . . . . . . . . . . . . 17 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝐷 ∈ ran 𝐿)
2322adantr 480 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐷 ∈ ran 𝐿)
2412adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐴𝑃)
2513adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝑏𝑃)
263neqned 2932 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝐴𝑏)
2726adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐴𝑏)
285, 7, 19, 20, 24, 25, 27tgelrnln 28593 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → (𝐴𝐿𝑏) ∈ ran 𝐿)
29 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐷 ≠ (𝐴𝐿𝑏))
30 simp-4r 783 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝐴𝐷)
3130adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐴𝐷)
325, 7, 19, 20, 24, 25, 27tglinerflx1 28596 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐴 ∈ (𝐴𝐿𝑏))
3331, 32elind 4153 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐴 ∈ (𝐷 ∩ (𝐴𝐿𝑏)))
34 simpllr 775 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → (𝐴(midG‘𝐺)𝑏) ∈ 𝐷)
355, 6, 7, 9, 11, 12, 13midbtwn 28742 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → (𝐴(midG‘𝐺)𝑏) ∈ (𝐴𝐼𝑏))
365, 7, 19, 9, 12, 13, 15, 26, 35btwnlng1 28582 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → (𝐴(midG‘𝐺)𝑏) ∈ (𝐴𝐿𝑏))
3736adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → (𝐴(midG‘𝐺)𝑏) ∈ (𝐴𝐿𝑏))
3834, 37elind 4153 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → (𝐴(midG‘𝐺)𝑏) ∈ (𝐷 ∩ (𝐴𝐿𝑏)))
395, 7, 19, 20, 23, 28, 29, 33, 38tglineineq 28606 . . . . . . . . . . . . . . 15 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐴 = (𝐴(midG‘𝐺)𝑏))
4039fveq2d 6830 . . . . . . . . . . . . . 14 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → ((pInvG‘𝐺)‘𝐴) = ((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝑏)))
4140fveq1d 6828 . . . . . . . . . . . . 13 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → (((pInvG‘𝐺)‘𝐴)‘𝐴) = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝑏))‘𝐴))
42 eqid 2729 . . . . . . . . . . . . . 14 ((pInvG‘𝐺)‘𝐴) = ((pInvG‘𝐺)‘𝐴)
435, 6, 7, 19, 14, 20, 24, 42mircinv 28631 . . . . . . . . . . . . 13 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → (((pInvG‘𝐺)‘𝐴)‘𝐴) = 𝐴)
4418, 41, 433eqtr2rd 2771 . . . . . . . . . . . 12 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐴 = 𝑏)
453, 44mtand 815 . . . . . . . . . . 11 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → ¬ 𝐷 ≠ (𝐴𝐿𝑏))
468ad5antr 734 . . . . . . . . . . . 12 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)) → 𝐺 ∈ TarskiG)
4721ad5antr 734 . . . . . . . . . . . 12 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)) → 𝐷 ∈ ran 𝐿)
48 nne 2929 . . . . . . . . . . . . . . 15 𝐷 ≠ (𝐴𝐿𝑏) ↔ 𝐷 = (𝐴𝐿𝑏))
4945, 48sylib 218 . . . . . . . . . . . . . 14 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝐷 = (𝐴𝐿𝑏))
5049adantr 480 . . . . . . . . . . . . 13 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)) → 𝐷 = (𝐴𝐿𝑏))
5150, 47eqeltrrd 2829 . . . . . . . . . . . 12 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)) → (𝐴𝐿𝑏) ∈ ran 𝐿)
52 simpr 484 . . . . . . . . . . . 12 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)) → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏))
535, 6, 7, 19, 46, 47, 51, 52perpneq 28677 . . . . . . . . . . 11 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)) → 𝐷 ≠ (𝐴𝐿𝑏))
5445, 53mtand 815 . . . . . . . . . 10 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → ¬ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏))
5554ex 412 . . . . . . . . 9 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) → (¬ 𝐴 = 𝑏 → ¬ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)))
5655con4d 115 . . . . . . . 8 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) → (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) → 𝐴 = 𝑏))
57 idd 24 . . . . . . . 8 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) → (𝐴 = 𝑏𝐴 = 𝑏))
5856, 57jaod 859 . . . . . . 7 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) → ((𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏) → 𝐴 = 𝑏))
5958impr 454 . . . . . 6 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝐴 = 𝑏)
6059eqcomd 2735 . . . . 5 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝑏 = 𝐴)
61 simpr 484 . . . . . . . . 9 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → 𝑏 = 𝐴)
6261oveq2d 7369 . . . . . . . 8 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → (𝐴(midG‘𝐺)𝑏) = (𝐴(midG‘𝐺)𝐴))
635, 6, 7, 8, 10, 1, 1midid 28744 . . . . . . . . 9 (𝜑 → (𝐴(midG‘𝐺)𝐴) = 𝐴)
6463ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → (𝐴(midG‘𝐺)𝐴) = 𝐴)
6562, 64eqtrd 2764 . . . . . . 7 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → (𝐴(midG‘𝐺)𝑏) = 𝐴)
66 simpllr 775 . . . . . . 7 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → 𝐴𝐷)
6765, 66eqeltrd 2828 . . . . . 6 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → (𝐴(midG‘𝐺)𝑏) ∈ 𝐷)
6861eqcomd 2735 . . . . . . 7 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → 𝐴 = 𝑏)
6968olcd 874 . . . . . 6 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))
7067, 69jca 511 . . . . 5 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
7160, 70impbida 800 . . . 4 (((𝜑𝐴𝐷) ∧ 𝑏𝑃) → (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ 𝑏 = 𝐴))
7271ralrimiva 3121 . . 3 ((𝜑𝐴𝐷) → ∀𝑏𝑃 (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ 𝑏 = 𝐴))
73 reu6i 3690 . . 3 ((𝐴𝑃 ∧ ∀𝑏𝑃 (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ 𝑏 = 𝐴)) → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
742, 72, 73syl2anc 584 . 2 ((𝜑𝐴𝐷) → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
758adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐺 ∈ TarskiG)
7675ad2antrr 726 . . . . 5 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → 𝐺 ∈ TarskiG)
7721adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐷 ∈ ran 𝐿)
7877ad2antrr 726 . . . . . 6 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → 𝐷 ∈ ran 𝐿)
79 simplr 768 . . . . . 6 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → 𝑥𝐷)
805, 19, 7, 76, 78, 79tglnpt 28512 . . . . 5 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → 𝑥𝑃)
81 eqid 2729 . . . . 5 ((pInvG‘𝐺)‘𝑥) = ((pInvG‘𝐺)‘𝑥)
821adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴𝑃)
8382ad2antrr 726 . . . . 5 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → 𝐴𝑃)
845, 6, 7, 19, 14, 76, 80, 81, 83mircl 28624 . . . 4 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → (((pInvG‘𝐺)‘𝑥)‘𝐴) ∈ 𝑃)
85 oveq2 7361 . . . . . . . . . 10 (𝑥 = (𝐴(midG‘𝐺)𝑏) → (𝐴𝐿𝑥) = (𝐴𝐿(𝐴(midG‘𝐺)𝑏)))
8685breq1d 5105 . . . . . . . . 9 (𝑥 = (𝐴(midG‘𝐺)𝑏) → ((𝐴𝐿𝑥)(⟂G‘𝐺)𝐷 ↔ (𝐴𝐿(𝐴(midG‘𝐺)𝑏))(⟂G‘𝐺)𝐷))
87 simprl 770 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴(midG‘𝐺)𝑏) ∈ 𝐷)
88 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐴𝐷) → ¬ 𝐴𝐷)
895, 6, 7, 19, 75, 77, 82, 88foot 28685 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐴𝐷) → ∃!𝑥𝐷 (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷)
90 reurmo 3348 . . . . . . . . . . 11 (∃!𝑥𝐷 (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷 → ∃*𝑥𝐷 (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷)
9189, 90syl 17 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴𝐷) → ∃*𝑥𝐷 (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷)
9291ad4antr 732 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → ∃*𝑥𝐷 (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷)
9379ad2antrr 726 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝑥𝐷)
94 simpllr 775 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷)
9576ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝐺 ∈ TarskiG)
9683ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝐴𝑃)
97 simplr 768 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝑏𝑃)
9810ad5antr 734 . . . . . . . . . . . . 13 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝐺DimTarskiG≥2)
995, 6, 7, 95, 98, 96, 97midcl 28740 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴(midG‘𝐺)𝑏) ∈ 𝑃)
1005, 6, 7, 95, 98, 96, 97midbtwn 28742 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴(midG‘𝐺)𝑏) ∈ (𝐴𝐼𝑏))
10188ad4antr 732 . . . . . . . . . . . . 13 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → ¬ 𝐴𝐷)
102 nelne2 3023 . . . . . . . . . . . . 13 (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ ¬ 𝐴𝐷) → (𝐴(midG‘𝐺)𝑏) ≠ 𝐴)
10387, 101, 102syl2anc 584 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴(midG‘𝐺)𝑏) ≠ 𝐴)
1045, 6, 7, 95, 96, 99, 97, 100, 103tgbtwnne 28453 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝐴𝑏)
1055, 7, 19, 95, 96, 97, 99, 104, 100btwnlng1 28582 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴(midG‘𝐺)𝑏) ∈ (𝐴𝐿𝑏))
1065, 7, 19, 95, 96, 97, 104, 99, 103, 105tglineelsb2 28595 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴𝐿𝑏) = (𝐴𝐿(𝐴(midG‘𝐺)𝑏)))
10778ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝐷 ∈ ran 𝐿)
1085, 7, 19, 95, 96, 97, 104tgelrnln 28593 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴𝐿𝑏) ∈ ran 𝐿)
109104neneqd 2930 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → ¬ 𝐴 = 𝑏)
110 simprr 772 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))
111110orcomd 871 . . . . . . . . . . . . 13 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴 = 𝑏𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)))
112111ord 864 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (¬ 𝐴 = 𝑏𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)))
113109, 112mpd 15 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏))
1145, 6, 7, 19, 95, 107, 108, 113perpcom 28676 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴𝐿𝑏)(⟂G‘𝐺)𝐷)
115106, 114eqbrtrrd 5119 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴𝐿(𝐴(midG‘𝐺)𝑏))(⟂G‘𝐺)𝐷)
11686, 87, 92, 93, 94, 115rmoi2 3847 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝑥 = (𝐴(midG‘𝐺)𝑏))
117116eqcomd 2735 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴(midG‘𝐺)𝑏) = 𝑥)
11880ad2antrr 726 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝑥𝑃)
1195, 6, 7, 95, 98, 96, 97, 14, 118ismidb 28741 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴) ↔ (𝐴(midG‘𝐺)𝑏) = 𝑥))
120117, 119mpbird 257 . . . . . 6 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴))
121 simpr 484 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴))
12276ad2antrr 726 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → 𝐺 ∈ TarskiG)
12310ad5antr 734 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → 𝐺DimTarskiG≥2)
12483ad2antrr 726 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → 𝐴𝑃)
125 simplr 768 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → 𝑏𝑃)
12680ad2antrr 726 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → 𝑥𝑃)
1275, 6, 7, 122, 123, 124, 125, 14, 126ismidb 28741 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → (𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴) ↔ (𝐴(midG‘𝐺)𝑏) = 𝑥))
128121, 127mpbid 232 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → (𝐴(midG‘𝐺)𝑏) = 𝑥)
12979ad2antrr 726 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → 𝑥𝐷)
130128, 129eqeltrd 2828 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → (𝐴(midG‘𝐺)𝑏) ∈ 𝐷)
131122adantr 480 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝐺 ∈ TarskiG)
132 simp-4r 783 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷)
13319, 131, 132perpln1 28673 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → (𝐴𝐿𝑥) ∈ ran 𝐿)
13478ad3antrrr 730 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝐷 ∈ ran 𝐿)
1355, 6, 7, 19, 131, 133, 134, 132perpcom 28676 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑥))
136124adantr 480 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝐴𝑃)
137126adantr 480 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑥𝑃)
1385, 7, 19, 131, 136, 137, 133tglnne 28591 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝐴𝑥)
139 simpllr 775 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑏𝑃)
140 simpr 484 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝐴𝑏)
141140necomd 2980 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑏𝐴)
1425, 6, 7, 19, 14, 131, 137, 81, 136mirbtwn 28621 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑥 ∈ ((((pInvG‘𝐺)‘𝑥)‘𝐴)𝐼𝐴))
143 simplr 768 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴))
144143oveq1d 7368 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → (𝑏𝐼𝐴) = ((((pInvG‘𝐺)‘𝑥)‘𝐴)𝐼𝐴))
145142, 144eleqtrrd 2831 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑥 ∈ (𝑏𝐼𝐴))
1465, 7, 19, 131, 139, 136, 137, 141, 145btwnlng1 28582 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑥 ∈ (𝑏𝐿𝐴))
1475, 7, 19, 131, 136, 137, 139, 138, 146, 141lnrot1 28586 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑏 ∈ (𝐴𝐿𝑥))
1485, 7, 19, 131, 136, 137, 138, 139, 141, 147tglineelsb2 28595 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → (𝐴𝐿𝑥) = (𝐴𝐿𝑏))
149135, 148breqtrd 5121 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏))
150149ex 412 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → (𝐴𝑏𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)))
151150necon1bd 2943 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → (¬ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) → 𝐴 = 𝑏))
152151orrd 863 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))
153130, 152jca 511 . . . . . 6 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
154120, 153impbida 800 . . . . 5 (((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) → (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)))
155154ralrimiva 3121 . . . 4 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → ∀𝑏𝑃 (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)))
156 reu6i 3690 . . . 4 (((((pInvG‘𝐺)‘𝑥)‘𝐴) ∈ 𝑃 ∧ ∀𝑏𝑃 (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴))) → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
15784, 155, 156syl2anc 584 . . 3 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
1585, 6, 7, 19, 75, 77, 82, 88footex 28684 . . 3 ((𝜑 ∧ ¬ 𝐴𝐷) → ∃𝑥𝐷 (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷)
159157, 158r19.29a 3137 . 2 ((𝜑 ∧ ¬ 𝐴𝐷) → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
16074, 159pm2.61dan 812 1 (𝜑 → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  ∃!wreu 3343  ∃*wrmo 3344   class class class wbr 5095  ran crn 5624  cfv 6486  (class class class)co 7353  2c2 12201  Basecbs 17138  distcds 17188  TarskiGcstrkg 28390  DimTarskiGcstrkgld 28394  Itvcitv 28396  LineGclng 28397  pInvGcmir 28615  ⟂Gcperpg 28658  midGcmid 28735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-concat 14496  df-s1 14521  df-s2 14773  df-s3 14774  df-trkgc 28411  df-trkgb 28412  df-trkgcb 28413  df-trkgld 28415  df-trkg 28416  df-cgrg 28474  df-leg 28546  df-mir 28616  df-rag 28657  df-perpg 28659  df-mid 28737
This theorem is referenced by:  lmif  28748  islmib  28750
  Copyright terms: Public domain W3C validator