|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rmob2 | Structured version Visualization version GIF version | ||
| Description: Consequence of "restricted at most one". (Contributed by Thierry Arnoux, 9-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| rmoi2.1 | ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜒)) | 
| rmoi2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) | 
| rmoi2.3 | ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 𝜓) | 
| rmoi2.4 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) | 
| rmoi2.5 | ⊢ (𝜑 → 𝜓) | 
| Ref | Expression | 
|---|---|
| rmob2 | ⊢ (𝜑 → (𝑥 = 𝐵 ↔ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rmoi2.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 2 | rmoi2.3 | . . . 4 ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 𝜓) | |
| 3 | df-rmo 3379 | . . . 4 ⊢ (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 4 | 2, 3 | sylib 218 | . . 3 ⊢ (𝜑 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | 
| 5 | rmoi2.4 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 6 | rmoi2.5 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 7 | eleq1 2828 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 8 | rmoi2.1 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 9 | 7, 8 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝐵 ∈ 𝐴 ∧ 𝜒))) | 
| 10 | 9 | mob2 3720 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → (𝑥 = 𝐵 ↔ (𝐵 ∈ 𝐴 ∧ 𝜒))) | 
| 11 | 1, 4, 5, 6, 10 | syl112anc 1375 | . 2 ⊢ (𝜑 → (𝑥 = 𝐵 ↔ (𝐵 ∈ 𝐴 ∧ 𝜒))) | 
| 12 | 1, 11 | mpbirand 707 | 1 ⊢ (𝜑 → (𝑥 = 𝐵 ↔ 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃*wmo 2537 ∃*wrmo 3378 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-clab 2714 df-cleq 2728 df-clel 2815 df-rmo 3379 df-v 3481 | 
| This theorem is referenced by: rmoi2 3892 | 
| Copyright terms: Public domain | W3C validator |