| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rmob2 | Structured version Visualization version GIF version | ||
| Description: Consequence of "restricted at most one". (Contributed by Thierry Arnoux, 9-Dec-2019.) |
| Ref | Expression |
|---|---|
| rmoi2.1 | ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜒)) |
| rmoi2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| rmoi2.3 | ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 𝜓) |
| rmoi2.4 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| rmoi2.5 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| rmob2 | ⊢ (𝜑 → (𝑥 = 𝐵 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmoi2.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 2 | rmoi2.3 | . . . 4 ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 𝜓) | |
| 3 | df-rmo 3357 | . . . 4 ⊢ (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 4 | 2, 3 | sylib 218 | . . 3 ⊢ (𝜑 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 5 | rmoi2.4 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 6 | rmoi2.5 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 7 | eleq1 2817 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 8 | rmoi2.1 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 9 | 7, 8 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝐵 ∈ 𝐴 ∧ 𝜒))) |
| 10 | 9 | mob2 3694 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → (𝑥 = 𝐵 ↔ (𝐵 ∈ 𝐴 ∧ 𝜒))) |
| 11 | 1, 4, 5, 6, 10 | syl112anc 1376 | . 2 ⊢ (𝜑 → (𝑥 = 𝐵 ↔ (𝐵 ∈ 𝐴 ∧ 𝜒))) |
| 12 | 1, 11 | mpbirand 707 | 1 ⊢ (𝜑 → (𝑥 = 𝐵 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃*wmo 2532 ∃*wrmo 3356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-rmo 3357 df-v 3457 |
| This theorem is referenced by: rmoi2 3864 |
| Copyright terms: Public domain | W3C validator |