MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmob2 Structured version   Visualization version   GIF version

Theorem rmob2 3825
Description: Consequence of "restricted at most one". (Contributed by Thierry Arnoux, 9-Dec-2019.)
Hypotheses
Ref Expression
rmoi2.1 (𝑥 = 𝐵 → (𝜓𝜒))
rmoi2.2 (𝜑𝐵𝐴)
rmoi2.3 (𝜑 → ∃*𝑥𝐴 𝜓)
rmoi2.4 (𝜑𝑥𝐴)
rmoi2.5 (𝜑𝜓)
Assertion
Ref Expression
rmob2 (𝜑 → (𝑥 = 𝐵𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rmob2
StepHypRef Expression
1 rmoi2.2 . 2 (𝜑𝐵𝐴)
2 rmoi2.3 . . . 4 (𝜑 → ∃*𝑥𝐴 𝜓)
3 df-rmo 3071 . . . 4 (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥(𝑥𝐴𝜓))
42, 3sylib 217 . . 3 (𝜑 → ∃*𝑥(𝑥𝐴𝜓))
5 rmoi2.4 . . 3 (𝜑𝑥𝐴)
6 rmoi2.5 . . 3 (𝜑𝜓)
7 eleq1 2826 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
8 rmoi2.1 . . . . 5 (𝑥 = 𝐵 → (𝜓𝜒))
97, 8anbi12d 631 . . . 4 (𝑥 = 𝐵 → ((𝑥𝐴𝜓) ↔ (𝐵𝐴𝜒)))
109mob2 3650 . . 3 ((𝐵𝐴 ∧ ∃*𝑥(𝑥𝐴𝜓) ∧ (𝑥𝐴𝜓)) → (𝑥 = 𝐵 ↔ (𝐵𝐴𝜒)))
111, 4, 5, 6, 10syl112anc 1373 . 2 (𝜑 → (𝑥 = 𝐵 ↔ (𝐵𝐴𝜒)))
121, 11mpbirand 704 1 (𝜑 → (𝑥 = 𝐵𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  ∃*wmo 2538  ∃*wrmo 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-rmo 3071  df-v 3434
This theorem is referenced by:  rmoi2  3826
  Copyright terms: Public domain W3C validator