Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rmob2 | Structured version Visualization version GIF version |
Description: Consequence of "restricted at most one". (Contributed by Thierry Arnoux, 9-Dec-2019.) |
Ref | Expression |
---|---|
rmoi2.1 | ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜒)) |
rmoi2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
rmoi2.3 | ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 𝜓) |
rmoi2.4 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
rmoi2.5 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
rmob2 | ⊢ (𝜑 → (𝑥 = 𝐵 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmoi2.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
2 | rmoi2.3 | . . . 4 ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 𝜓) | |
3 | df-rmo 3071 | . . . 4 ⊢ (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
4 | 2, 3 | sylib 217 | . . 3 ⊢ (𝜑 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) |
5 | rmoi2.4 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
6 | rmoi2.5 | . . 3 ⊢ (𝜑 → 𝜓) | |
7 | eleq1 2826 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
8 | rmoi2.1 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜒)) | |
9 | 7, 8 | anbi12d 630 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝐵 ∈ 𝐴 ∧ 𝜒))) |
10 | 9 | mob2 3645 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → (𝑥 = 𝐵 ↔ (𝐵 ∈ 𝐴 ∧ 𝜒))) |
11 | 1, 4, 5, 6, 10 | syl112anc 1372 | . 2 ⊢ (𝜑 → (𝑥 = 𝐵 ↔ (𝐵 ∈ 𝐴 ∧ 𝜒))) |
12 | 1, 11 | mpbirand 703 | 1 ⊢ (𝜑 → (𝑥 = 𝐵 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃*wmo 2538 ∃*wrmo 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2817 df-rmo 3071 df-v 3424 |
This theorem is referenced by: rmoi2 3822 |
Copyright terms: Public domain | W3C validator |