Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rmob2 | Structured version Visualization version GIF version |
Description: Consequence of "restricted at most one". (Contributed by Thierry Arnoux, 9-Dec-2019.) |
Ref | Expression |
---|---|
rmoi2.1 | ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜒)) |
rmoi2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
rmoi2.3 | ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 𝜓) |
rmoi2.4 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
rmoi2.5 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
rmob2 | ⊢ (𝜑 → (𝑥 = 𝐵 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmoi2.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
2 | rmoi2.3 | . . . 4 ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 𝜓) | |
3 | df-rmo 3071 | . . . 4 ⊢ (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
4 | 2, 3 | sylib 217 | . . 3 ⊢ (𝜑 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) |
5 | rmoi2.4 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
6 | rmoi2.5 | . . 3 ⊢ (𝜑 → 𝜓) | |
7 | eleq1 2826 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
8 | rmoi2.1 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜒)) | |
9 | 7, 8 | anbi12d 631 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝐵 ∈ 𝐴 ∧ 𝜒))) |
10 | 9 | mob2 3650 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → (𝑥 = 𝐵 ↔ (𝐵 ∈ 𝐴 ∧ 𝜒))) |
11 | 1, 4, 5, 6, 10 | syl112anc 1373 | . 2 ⊢ (𝜑 → (𝑥 = 𝐵 ↔ (𝐵 ∈ 𝐴 ∧ 𝜒))) |
12 | 1, 11 | mpbirand 704 | 1 ⊢ (𝜑 → (𝑥 = 𝐵 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃*wmo 2538 ∃*wrmo 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-rmo 3071 df-v 3434 |
This theorem is referenced by: rmoi2 3826 |
Copyright terms: Public domain | W3C validator |