| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ipolubdm | Structured version Visualization version GIF version | ||
| Description: The domain of the LUB of the inclusion poset. (Contributed by Zhi Wang, 28-Sep-2024.) |
| Ref | Expression |
|---|---|
| ipolub.i | ⊢ 𝐼 = (toInc‘𝐹) |
| ipolub.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| ipolub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐹) |
| ipolub.u | ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) |
| ipolubdm.t | ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) |
| Ref | Expression |
|---|---|
| ipolubdm | ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ 𝑇 ∈ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipolub.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐹) | |
| 2 | ipolub.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 3 | ipolub.i | . . . . . 6 ⊢ 𝐼 = (toInc‘𝐹) | |
| 4 | 3 | ipobas 18497 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → 𝐹 = (Base‘𝐼)) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 = (Base‘𝐼)) |
| 6 | eqidd 2731 | . . . 4 ⊢ (𝜑 → (le‘𝐼) = (le‘𝐼)) | |
| 7 | ipolub.u | . . . 4 ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) | |
| 8 | eqid 2730 | . . . . 5 ⊢ (le‘𝐼) = (le‘𝐼) | |
| 9 | 3, 2, 1, 8 | ipolublem 48978 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐹) → ((∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)) ↔ (∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑡 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧 → 𝑡(le‘𝐼)𝑧)))) |
| 10 | 3 | ipopos 18502 | . . . . 5 ⊢ 𝐼 ∈ Poset |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ Poset) |
| 12 | 5, 6, 7, 9, 11 | lubeldm2d 48950 | . . 3 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐹 ∧ ∃𝑡 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))))) |
| 13 | 1, 12 | mpbirand 707 | . 2 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ ∃𝑡 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)))) |
| 14 | ipolubdm.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) | |
| 15 | 14 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐹) ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) |
| 16 | intubeu 48976 | . . . . . . . 8 ⊢ (𝑡 ∈ 𝐹 → ((∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)) ↔ 𝑡 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥})) | |
| 17 | 16 | biimpa 476 | . . . . . . 7 ⊢ ((𝑡 ∈ 𝐹 ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑡 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) |
| 18 | 17 | adantll 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐹) ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑡 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) |
| 19 | 15, 18 | eqtr4d 2768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐹) ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑇 = 𝑡) |
| 20 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐹) ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑡 ∈ 𝐹) | |
| 21 | 19, 20 | eqeltrd 2829 | . . . 4 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐹) ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑇 ∈ 𝐹) |
| 22 | 21 | ex 412 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐹) → ((∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)) → 𝑇 ∈ 𝐹)) |
| 23 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → 𝑇 ∈ 𝐹) | |
| 24 | intubeu 48976 | . . . . 5 ⊢ (𝑇 ∈ 𝐹 → ((∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧)) ↔ 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥})) | |
| 25 | 24 | biimparc 479 | . . . 4 ⊢ ((𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥} ∧ 𝑇 ∈ 𝐹) → (∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧))) |
| 26 | 14, 25 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → (∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧))) |
| 27 | sseq2 3976 | . . . 4 ⊢ (𝑡 = 𝑇 → (∪ 𝑆 ⊆ 𝑡 ↔ ∪ 𝑆 ⊆ 𝑇)) | |
| 28 | sseq1 3975 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (𝑡 ⊆ 𝑧 ↔ 𝑇 ⊆ 𝑧)) | |
| 29 | 28 | imbi2d 340 | . . . . 5 ⊢ (𝑡 = 𝑇 → ((∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧) ↔ (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧))) |
| 30 | 29 | ralbidv 3157 | . . . 4 ⊢ (𝑡 = 𝑇 → (∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧) ↔ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧))) |
| 31 | 27, 30 | anbi12d 632 | . . 3 ⊢ (𝑡 = 𝑇 → ((∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)) ↔ (∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧)))) |
| 32 | 22, 23, 26, 31 | rspceb2dv 3595 | . 2 ⊢ (𝜑 → (∃𝑡 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)) ↔ 𝑇 ∈ 𝐹)) |
| 33 | 13, 32 | bitrd 279 | 1 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ 𝑇 ∈ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 {crab 3408 ⊆ wss 3917 ∪ cuni 4874 ∩ cint 4913 dom cdm 5641 ‘cfv 6514 Basecbs 17186 lecple 17234 Posetcpo 18275 lubclub 18277 toInccipo 18493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-tset 17246 df-ple 17247 df-ocomp 17248 df-proset 18262 df-poset 18281 df-lub 18312 df-ipo 18494 |
| This theorem is referenced by: mreclat 48989 topclat 48990 |
| Copyright terms: Public domain | W3C validator |