Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ipolubdm Structured version   Visualization version   GIF version

Theorem ipolubdm 48961
Description: The domain of the LUB of the inclusion poset. (Contributed by Zhi Wang, 28-Sep-2024.)
Hypotheses
Ref Expression
ipolub.i 𝐼 = (toInc‘𝐹)
ipolub.f (𝜑𝐹𝑉)
ipolub.s (𝜑𝑆𝐹)
ipolub.u (𝜑𝑈 = (lub‘𝐼))
ipolubdm.t (𝜑𝑇 = {𝑥𝐹 𝑆𝑥})
Assertion
Ref Expression
ipolubdm (𝜑 → (𝑆 ∈ dom 𝑈𝑇𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)   𝑈(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem ipolubdm
Dummy variables 𝑡 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipolub.s . . 3 (𝜑𝑆𝐹)
2 ipolub.f . . . . 5 (𝜑𝐹𝑉)
3 ipolub.i . . . . . 6 𝐼 = (toInc‘𝐹)
43ipobas 18541 . . . . 5 (𝐹𝑉𝐹 = (Base‘𝐼))
52, 4syl 17 . . . 4 (𝜑𝐹 = (Base‘𝐼))
6 eqidd 2736 . . . 4 (𝜑 → (le‘𝐼) = (le‘𝐼))
7 ipolub.u . . . 4 (𝜑𝑈 = (lub‘𝐼))
8 eqid 2735 . . . . 5 (le‘𝐼) = (le‘𝐼)
93, 2, 1, 8ipolublem 48960 . . . 4 ((𝜑𝑡𝐹) → (( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧)) ↔ (∀𝑦𝑆 𝑦(le‘𝐼)𝑡 ∧ ∀𝑧𝐹 (∀𝑦𝑆 𝑦(le‘𝐼)𝑧𝑡(le‘𝐼)𝑧))))
103ipopos 18546 . . . . 5 𝐼 ∈ Poset
1110a1i 11 . . . 4 (𝜑𝐼 ∈ Poset)
125, 6, 7, 9, 11lubeldm2d 48932 . . 3 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐹 ∧ ∃𝑡𝐹 ( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧)))))
131, 12mpbirand 707 . 2 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ ∃𝑡𝐹 ( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧))))
14 ipolubdm.t . . . . . . 7 (𝜑𝑇 = {𝑥𝐹 𝑆𝑥})
1514ad2antrr 726 . . . . . 6 (((𝜑𝑡𝐹) ∧ ( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧))) → 𝑇 = {𝑥𝐹 𝑆𝑥})
16 intubeu 48958 . . . . . . . 8 (𝑡𝐹 → (( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧)) ↔ 𝑡 = {𝑥𝐹 𝑆𝑥}))
1716biimpa 476 . . . . . . 7 ((𝑡𝐹 ∧ ( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧))) → 𝑡 = {𝑥𝐹 𝑆𝑥})
1817adantll 714 . . . . . 6 (((𝜑𝑡𝐹) ∧ ( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧))) → 𝑡 = {𝑥𝐹 𝑆𝑥})
1915, 18eqtr4d 2773 . . . . 5 (((𝜑𝑡𝐹) ∧ ( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧))) → 𝑇 = 𝑡)
20 simplr 768 . . . . 5 (((𝜑𝑡𝐹) ∧ ( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧))) → 𝑡𝐹)
2119, 20eqeltrd 2834 . . . 4 (((𝜑𝑡𝐹) ∧ ( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧))) → 𝑇𝐹)
2221ex 412 . . 3 ((𝜑𝑡𝐹) → (( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧)) → 𝑇𝐹))
23 simpr 484 . . 3 ((𝜑𝑇𝐹) → 𝑇𝐹)
24 intubeu 48958 . . . . 5 (𝑇𝐹 → (( 𝑆𝑇 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑇𝑧)) ↔ 𝑇 = {𝑥𝐹 𝑆𝑥}))
2524biimparc 479 . . . 4 ((𝑇 = {𝑥𝐹 𝑆𝑥} ∧ 𝑇𝐹) → ( 𝑆𝑇 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑇𝑧)))
2614, 25sylan 580 . . 3 ((𝜑𝑇𝐹) → ( 𝑆𝑇 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑇𝑧)))
27 sseq2 3985 . . . 4 (𝑡 = 𝑇 → ( 𝑆𝑡 𝑆𝑇))
28 sseq1 3984 . . . . . 6 (𝑡 = 𝑇 → (𝑡𝑧𝑇𝑧))
2928imbi2d 340 . . . . 5 (𝑡 = 𝑇 → (( 𝑆𝑧𝑡𝑧) ↔ ( 𝑆𝑧𝑇𝑧)))
3029ralbidv 3163 . . . 4 (𝑡 = 𝑇 → (∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧) ↔ ∀𝑧𝐹 ( 𝑆𝑧𝑇𝑧)))
3127, 30anbi12d 632 . . 3 (𝑡 = 𝑇 → (( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧)) ↔ ( 𝑆𝑇 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑇𝑧))))
3222, 23, 26, 31rspceb2dv 3605 . 2 (𝜑 → (∃𝑡𝐹 ( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧)) ↔ 𝑇𝐹))
3313, 32bitrd 279 1 (𝜑 → (𝑆 ∈ dom 𝑈𝑇𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  wss 3926   cuni 4883   cint 4922  dom cdm 5654  cfv 6531  Basecbs 17228  lecple 17278  Posetcpo 18319  lubclub 18321  toInccipo 18537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-tset 17290  df-ple 17291  df-ocomp 17292  df-proset 18306  df-poset 18325  df-lub 18356  df-ipo 18538
This theorem is referenced by:  mreclat  48971  topclat  48972
  Copyright terms: Public domain W3C validator