Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ipolubdm | Structured version Visualization version GIF version |
Description: The domain of the LUB of the inclusion poset. (Contributed by Zhi Wang, 28-Sep-2024.) |
Ref | Expression |
---|---|
ipolub.i | ⊢ 𝐼 = (toInc‘𝐹) |
ipolub.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
ipolub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐹) |
ipolub.u | ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) |
ipolubdm.t | ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) |
Ref | Expression |
---|---|
ipolubdm | ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ 𝑇 ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipolub.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐹) | |
2 | ipolub.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
3 | ipolub.i | . . . . . 6 ⊢ 𝐼 = (toInc‘𝐹) | |
4 | 3 | ipobas 18347 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → 𝐹 = (Base‘𝐼)) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 = (Base‘𝐼)) |
6 | eqidd 2737 | . . . 4 ⊢ (𝜑 → (le‘𝐼) = (le‘𝐼)) | |
7 | ipolub.u | . . . 4 ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) | |
8 | eqid 2736 | . . . . 5 ⊢ (le‘𝐼) = (le‘𝐼) | |
9 | 3, 2, 1, 8 | ipolublem 46690 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐹) → ((∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)) ↔ (∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑡 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧 → 𝑡(le‘𝐼)𝑧)))) |
10 | 3 | ipopos 18352 | . . . . 5 ⊢ 𝐼 ∈ Poset |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ Poset) |
12 | 5, 6, 7, 9, 11 | lubeldm2d 46670 | . . 3 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐹 ∧ ∃𝑡 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))))) |
13 | 1, 12 | mpbirand 704 | . 2 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ ∃𝑡 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)))) |
14 | ipolubdm.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) | |
15 | 14 | ad2antrr 723 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐹) ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) |
16 | intubeu 46688 | . . . . . . . 8 ⊢ (𝑡 ∈ 𝐹 → ((∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)) ↔ 𝑡 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥})) | |
17 | 16 | biimpa 477 | . . . . . . 7 ⊢ ((𝑡 ∈ 𝐹 ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑡 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) |
18 | 17 | adantll 711 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐹) ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑡 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) |
19 | 15, 18 | eqtr4d 2779 | . . . . 5 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐹) ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑇 = 𝑡) |
20 | simplr 766 | . . . . 5 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐹) ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑡 ∈ 𝐹) | |
21 | 19, 20 | eqeltrd 2837 | . . . 4 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐹) ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑇 ∈ 𝐹) |
22 | 21 | ex 413 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐹) → ((∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)) → 𝑇 ∈ 𝐹)) |
23 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → 𝑇 ∈ 𝐹) | |
24 | intubeu 46688 | . . . . 5 ⊢ (𝑇 ∈ 𝐹 → ((∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧)) ↔ 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥})) | |
25 | 24 | biimparc 480 | . . . 4 ⊢ ((𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥} ∧ 𝑇 ∈ 𝐹) → (∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧))) |
26 | 14, 25 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → (∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧))) |
27 | sseq2 3958 | . . . 4 ⊢ (𝑡 = 𝑇 → (∪ 𝑆 ⊆ 𝑡 ↔ ∪ 𝑆 ⊆ 𝑇)) | |
28 | sseq1 3957 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (𝑡 ⊆ 𝑧 ↔ 𝑇 ⊆ 𝑧)) | |
29 | 28 | imbi2d 340 | . . . . 5 ⊢ (𝑡 = 𝑇 → ((∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧) ↔ (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧))) |
30 | 29 | ralbidv 3170 | . . . 4 ⊢ (𝑡 = 𝑇 → (∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧) ↔ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧))) |
31 | 27, 30 | anbi12d 631 | . . 3 ⊢ (𝑡 = 𝑇 → ((∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)) ↔ (∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧)))) |
32 | 22, 23, 26, 31 | rspceb2dv 46566 | . 2 ⊢ (𝜑 → (∃𝑡 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)) ↔ 𝑇 ∈ 𝐹)) |
33 | 13, 32 | bitrd 278 | 1 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ 𝑇 ∈ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∃wrex 3070 {crab 3403 ⊆ wss 3898 ∪ cuni 4853 ∩ cint 4895 dom cdm 5621 ‘cfv 6480 Basecbs 17010 lecple 17067 Posetcpo 18123 lubclub 18125 toInccipo 18343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-7 12143 df-8 12144 df-9 12145 df-n0 12336 df-z 12422 df-dec 12540 df-uz 12685 df-fz 13342 df-struct 16946 df-slot 16981 df-ndx 16993 df-base 17011 df-tset 17079 df-ple 17080 df-ocomp 17081 df-proset 18111 df-poset 18129 df-lub 18162 df-ipo 18344 |
This theorem is referenced by: mreclat 46701 topclat 46702 |
Copyright terms: Public domain | W3C validator |