Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ipolubdm Structured version   Visualization version   GIF version

Theorem ipolubdm 48313
Description: The domain of the LUB of the inclusion poset. (Contributed by Zhi Wang, 28-Sep-2024.)
Hypotheses
Ref Expression
ipolub.i 𝐼 = (toInc‘𝐹)
ipolub.f (𝜑𝐹𝑉)
ipolub.s (𝜑𝑆𝐹)
ipolub.u (𝜑𝑈 = (lub‘𝐼))
ipolubdm.t (𝜑𝑇 = {𝑥𝐹 𝑆𝑥})
Assertion
Ref Expression
ipolubdm (𝜑 → (𝑆 ∈ dom 𝑈𝑇𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)   𝑈(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem ipolubdm
Dummy variables 𝑡 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipolub.s . . 3 (𝜑𝑆𝐹)
2 ipolub.f . . . . 5 (𝜑𝐹𝑉)
3 ipolub.i . . . . . 6 𝐼 = (toInc‘𝐹)
43ipobas 18556 . . . . 5 (𝐹𝑉𝐹 = (Base‘𝐼))
52, 4syl 17 . . . 4 (𝜑𝐹 = (Base‘𝐼))
6 eqidd 2727 . . . 4 (𝜑 → (le‘𝐼) = (le‘𝐼))
7 ipolub.u . . . 4 (𝜑𝑈 = (lub‘𝐼))
8 eqid 2726 . . . . 5 (le‘𝐼) = (le‘𝐼)
93, 2, 1, 8ipolublem 48312 . . . 4 ((𝜑𝑡𝐹) → (( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧)) ↔ (∀𝑦𝑆 𝑦(le‘𝐼)𝑡 ∧ ∀𝑧𝐹 (∀𝑦𝑆 𝑦(le‘𝐼)𝑧𝑡(le‘𝐼)𝑧))))
103ipopos 18561 . . . . 5 𝐼 ∈ Poset
1110a1i 11 . . . 4 (𝜑𝐼 ∈ Poset)
125, 6, 7, 9, 11lubeldm2d 48292 . . 3 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐹 ∧ ∃𝑡𝐹 ( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧)))))
131, 12mpbirand 705 . 2 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ ∃𝑡𝐹 ( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧))))
14 ipolubdm.t . . . . . . 7 (𝜑𝑇 = {𝑥𝐹 𝑆𝑥})
1514ad2antrr 724 . . . . . 6 (((𝜑𝑡𝐹) ∧ ( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧))) → 𝑇 = {𝑥𝐹 𝑆𝑥})
16 intubeu 48310 . . . . . . . 8 (𝑡𝐹 → (( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧)) ↔ 𝑡 = {𝑥𝐹 𝑆𝑥}))
1716biimpa 475 . . . . . . 7 ((𝑡𝐹 ∧ ( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧))) → 𝑡 = {𝑥𝐹 𝑆𝑥})
1817adantll 712 . . . . . 6 (((𝜑𝑡𝐹) ∧ ( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧))) → 𝑡 = {𝑥𝐹 𝑆𝑥})
1915, 18eqtr4d 2769 . . . . 5 (((𝜑𝑡𝐹) ∧ ( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧))) → 𝑇 = 𝑡)
20 simplr 767 . . . . 5 (((𝜑𝑡𝐹) ∧ ( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧))) → 𝑡𝐹)
2119, 20eqeltrd 2826 . . . 4 (((𝜑𝑡𝐹) ∧ ( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧))) → 𝑇𝐹)
2221ex 411 . . 3 ((𝜑𝑡𝐹) → (( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧)) → 𝑇𝐹))
23 simpr 483 . . 3 ((𝜑𝑇𝐹) → 𝑇𝐹)
24 intubeu 48310 . . . . 5 (𝑇𝐹 → (( 𝑆𝑇 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑇𝑧)) ↔ 𝑇 = {𝑥𝐹 𝑆𝑥}))
2524biimparc 478 . . . 4 ((𝑇 = {𝑥𝐹 𝑆𝑥} ∧ 𝑇𝐹) → ( 𝑆𝑇 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑇𝑧)))
2614, 25sylan 578 . . 3 ((𝜑𝑇𝐹) → ( 𝑆𝑇 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑇𝑧)))
27 sseq2 4006 . . . 4 (𝑡 = 𝑇 → ( 𝑆𝑡 𝑆𝑇))
28 sseq1 4005 . . . . . 6 (𝑡 = 𝑇 → (𝑡𝑧𝑇𝑧))
2928imbi2d 339 . . . . 5 (𝑡 = 𝑇 → (( 𝑆𝑧𝑡𝑧) ↔ ( 𝑆𝑧𝑇𝑧)))
3029ralbidv 3168 . . . 4 (𝑡 = 𝑇 → (∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧) ↔ ∀𝑧𝐹 ( 𝑆𝑧𝑇𝑧)))
3127, 30anbi12d 630 . . 3 (𝑡 = 𝑇 → (( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧)) ↔ ( 𝑆𝑇 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑇𝑧))))
3222, 23, 26, 31rspceb2dv 3612 . 2 (𝜑 → (∃𝑡𝐹 ( 𝑆𝑡 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑡𝑧)) ↔ 𝑇𝐹))
3313, 32bitrd 278 1 (𝜑 → (𝑆 ∈ dom 𝑈𝑇𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wral 3051  wrex 3060  {crab 3419  wss 3947   cuni 4913   cint 4954  dom cdm 5682  cfv 6554  Basecbs 17213  lecple 17273  Posetcpo 18332  lubclub 18334  toInccipo 18552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-fz 13539  df-struct 17149  df-slot 17184  df-ndx 17196  df-base 17214  df-tset 17285  df-ple 17286  df-ocomp 17287  df-proset 18320  df-poset 18338  df-lub 18371  df-ipo 18553
This theorem is referenced by:  mreclat  48323  topclat  48324
  Copyright terms: Public domain W3C validator