![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ipolubdm | Structured version Visualization version GIF version |
Description: The domain of the LUB of the inclusion poset. (Contributed by Zhi Wang, 28-Sep-2024.) |
Ref | Expression |
---|---|
ipolub.i | ⊢ 𝐼 = (toInc‘𝐹) |
ipolub.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
ipolub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐹) |
ipolub.u | ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) |
ipolubdm.t | ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) |
Ref | Expression |
---|---|
ipolubdm | ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ 𝑇 ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipolub.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐹) | |
2 | ipolub.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
3 | ipolub.i | . . . . . 6 ⊢ 𝐼 = (toInc‘𝐹) | |
4 | 3 | ipobas 18556 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → 𝐹 = (Base‘𝐼)) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 = (Base‘𝐼)) |
6 | eqidd 2727 | . . . 4 ⊢ (𝜑 → (le‘𝐼) = (le‘𝐼)) | |
7 | ipolub.u | . . . 4 ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) | |
8 | eqid 2726 | . . . . 5 ⊢ (le‘𝐼) = (le‘𝐼) | |
9 | 3, 2, 1, 8 | ipolublem 48312 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐹) → ((∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)) ↔ (∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑡 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧 → 𝑡(le‘𝐼)𝑧)))) |
10 | 3 | ipopos 18561 | . . . . 5 ⊢ 𝐼 ∈ Poset |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ Poset) |
12 | 5, 6, 7, 9, 11 | lubeldm2d 48292 | . . 3 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐹 ∧ ∃𝑡 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))))) |
13 | 1, 12 | mpbirand 705 | . 2 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ ∃𝑡 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)))) |
14 | ipolubdm.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) | |
15 | 14 | ad2antrr 724 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐹) ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) |
16 | intubeu 48310 | . . . . . . . 8 ⊢ (𝑡 ∈ 𝐹 → ((∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)) ↔ 𝑡 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥})) | |
17 | 16 | biimpa 475 | . . . . . . 7 ⊢ ((𝑡 ∈ 𝐹 ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑡 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) |
18 | 17 | adantll 712 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐹) ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑡 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) |
19 | 15, 18 | eqtr4d 2769 | . . . . 5 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐹) ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑇 = 𝑡) |
20 | simplr 767 | . . . . 5 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐹) ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑡 ∈ 𝐹) | |
21 | 19, 20 | eqeltrd 2826 | . . . 4 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐹) ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑇 ∈ 𝐹) |
22 | 21 | ex 411 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐹) → ((∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)) → 𝑇 ∈ 𝐹)) |
23 | simpr 483 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → 𝑇 ∈ 𝐹) | |
24 | intubeu 48310 | . . . . 5 ⊢ (𝑇 ∈ 𝐹 → ((∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧)) ↔ 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥})) | |
25 | 24 | biimparc 478 | . . . 4 ⊢ ((𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥} ∧ 𝑇 ∈ 𝐹) → (∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧))) |
26 | 14, 25 | sylan 578 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → (∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧))) |
27 | sseq2 4006 | . . . 4 ⊢ (𝑡 = 𝑇 → (∪ 𝑆 ⊆ 𝑡 ↔ ∪ 𝑆 ⊆ 𝑇)) | |
28 | sseq1 4005 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (𝑡 ⊆ 𝑧 ↔ 𝑇 ⊆ 𝑧)) | |
29 | 28 | imbi2d 339 | . . . . 5 ⊢ (𝑡 = 𝑇 → ((∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧) ↔ (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧))) |
30 | 29 | ralbidv 3168 | . . . 4 ⊢ (𝑡 = 𝑇 → (∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧) ↔ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧))) |
31 | 27, 30 | anbi12d 630 | . . 3 ⊢ (𝑡 = 𝑇 → ((∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)) ↔ (∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧)))) |
32 | 22, 23, 26, 31 | rspceb2dv 3612 | . 2 ⊢ (𝜑 → (∃𝑡 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)) ↔ 𝑇 ∈ 𝐹)) |
33 | 13, 32 | bitrd 278 | 1 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ 𝑇 ∈ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∃wrex 3060 {crab 3419 ⊆ wss 3947 ∪ cuni 4913 ∩ cint 4954 dom cdm 5682 ‘cfv 6554 Basecbs 17213 lecple 17273 Posetcpo 18332 lubclub 18334 toInccipo 18552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-fz 13539 df-struct 17149 df-slot 17184 df-ndx 17196 df-base 17214 df-tset 17285 df-ple 17286 df-ocomp 17287 df-proset 18320 df-poset 18338 df-lub 18371 df-ipo 18553 |
This theorem is referenced by: mreclat 48323 topclat 48324 |
Copyright terms: Public domain | W3C validator |