![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ipolubdm | Structured version Visualization version GIF version |
Description: The domain of the LUB of the inclusion poset. (Contributed by Zhi Wang, 28-Sep-2024.) |
Ref | Expression |
---|---|
ipolub.i | ⊢ 𝐼 = (toInc‘𝐹) |
ipolub.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
ipolub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐹) |
ipolub.u | ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) |
ipolubdm.t | ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) |
Ref | Expression |
---|---|
ipolubdm | ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ 𝑇 ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipolub.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐹) | |
2 | ipolub.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
3 | ipolub.i | . . . . . 6 ⊢ 𝐼 = (toInc‘𝐹) | |
4 | 3 | ipobas 18589 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → 𝐹 = (Base‘𝐼)) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 = (Base‘𝐼)) |
6 | eqidd 2736 | . . . 4 ⊢ (𝜑 → (le‘𝐼) = (le‘𝐼)) | |
7 | ipolub.u | . . . 4 ⊢ (𝜑 → 𝑈 = (lub‘𝐼)) | |
8 | eqid 2735 | . . . . 5 ⊢ (le‘𝐼) = (le‘𝐼) | |
9 | 3, 2, 1, 8 | ipolublem 48775 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐹) → ((∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)) ↔ (∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑡 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑦(le‘𝐼)𝑧 → 𝑡(le‘𝐼)𝑧)))) |
10 | 3 | ipopos 18594 | . . . . 5 ⊢ 𝐼 ∈ Poset |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ Poset) |
12 | 5, 6, 7, 9, 11 | lubeldm2d 48755 | . . 3 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐹 ∧ ∃𝑡 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))))) |
13 | 1, 12 | mpbirand 707 | . 2 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ ∃𝑡 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)))) |
14 | ipolubdm.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) | |
15 | 14 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐹) ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) |
16 | intubeu 48773 | . . . . . . . 8 ⊢ (𝑡 ∈ 𝐹 → ((∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)) ↔ 𝑡 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥})) | |
17 | 16 | biimpa 476 | . . . . . . 7 ⊢ ((𝑡 ∈ 𝐹 ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑡 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) |
18 | 17 | adantll 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐹) ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑡 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥}) |
19 | 15, 18 | eqtr4d 2778 | . . . . 5 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐹) ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑇 = 𝑡) |
20 | simplr 769 | . . . . 5 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐹) ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑡 ∈ 𝐹) | |
21 | 19, 20 | eqeltrd 2839 | . . . 4 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝐹) ∧ (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧))) → 𝑇 ∈ 𝐹) |
22 | 21 | ex 412 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐹) → ((∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)) → 𝑇 ∈ 𝐹)) |
23 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → 𝑇 ∈ 𝐹) | |
24 | intubeu 48773 | . . . . 5 ⊢ (𝑇 ∈ 𝐹 → ((∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧)) ↔ 𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥})) | |
25 | 24 | biimparc 479 | . . . 4 ⊢ ((𝑇 = ∩ {𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥} ∧ 𝑇 ∈ 𝐹) → (∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧))) |
26 | 14, 25 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → (∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧))) |
27 | sseq2 4022 | . . . 4 ⊢ (𝑡 = 𝑇 → (∪ 𝑆 ⊆ 𝑡 ↔ ∪ 𝑆 ⊆ 𝑇)) | |
28 | sseq1 4021 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (𝑡 ⊆ 𝑧 ↔ 𝑇 ⊆ 𝑧)) | |
29 | 28 | imbi2d 340 | . . . . 5 ⊢ (𝑡 = 𝑇 → ((∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧) ↔ (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧))) |
30 | 29 | ralbidv 3176 | . . . 4 ⊢ (𝑡 = 𝑇 → (∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧) ↔ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧))) |
31 | 27, 30 | anbi12d 632 | . . 3 ⊢ (𝑡 = 𝑇 → ((∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)) ↔ (∪ 𝑆 ⊆ 𝑇 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧)))) |
32 | 22, 23, 26, 31 | rspceb2dv 3626 | . 2 ⊢ (𝜑 → (∃𝑡 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑡 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧)) ↔ 𝑇 ∈ 𝐹)) |
33 | 13, 32 | bitrd 279 | 1 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ 𝑇 ∈ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 {crab 3433 ⊆ wss 3963 ∪ cuni 4912 ∩ cint 4951 dom cdm 5689 ‘cfv 6563 Basecbs 17245 lecple 17305 Posetcpo 18365 lubclub 18367 toInccipo 18585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-slot 17216 df-ndx 17228 df-base 17246 df-tset 17317 df-ple 17318 df-ocomp 17319 df-proset 18352 df-poset 18371 df-lub 18404 df-ipo 18586 |
This theorem is referenced by: mreclat 48786 topclat 48787 |
Copyright terms: Public domain | W3C validator |