Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspcime | Structured version Visualization version GIF version |
Description: Prove a restricted existential. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
rspcime.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓) |
rspcime.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Ref | Expression |
---|---|
rspcime | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcime.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | rspcime.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓) | |
3 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜑) | |
4 | 2, 3 | 2thd 264 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜑)) |
5 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
6 | 1, 4, 5 | rspcedvd 3555 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 |
This theorem is referenced by: elrnmptdv 5860 aks4d1p8d2 40021 mnuprdlem3 41781 mnurndlem1 41788 grumnudlem 41792 grumnud 41793 inaex 41804 gruex 41805 |
Copyright terms: Public domain | W3C validator |