MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcime Structured version   Visualization version   GIF version

Theorem rspcime 3613
Description: Prove a restricted existential. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
rspcime.1 ((𝜑𝑥 = 𝐴) → 𝜓)
rspcime.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
rspcime (𝜑 → ∃𝑥𝐵 𝜓)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐵   𝑥,𝐴
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcime
StepHypRef Expression
1 rspcime.2 . 2 (𝜑𝐴𝐵)
2 rspcime.1 . . 3 ((𝜑𝑥 = 𝐴) → 𝜓)
3 simpl 481 . . 3 ((𝜑𝑥 = 𝐴) → 𝜑)
42, 32thd 264 . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜑))
5 id 22 . 2 (𝜑𝜑)
61, 4, 5rspcedvd 3610 1 (𝜑 → ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wrex 3060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rex 3061
This theorem is referenced by:  elrnmptdv  5969  aks4d1p8d2  41784  mnuprdlem3  43948  mnurndlem1  43955  grumnudlem  43959  grumnud  43960  inaex  43971  gruex  43972
  Copyright terms: Public domain W3C validator