MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcime Structured version   Visualization version   GIF version

Theorem rspcime 3611
Description: Prove a restricted existential. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
rspcime.1 ((𝜑𝑥 = 𝐴) → 𝜓)
rspcime.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
rspcime (𝜑 → ∃𝑥𝐵 𝜓)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐵   𝑥,𝐴
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcime
StepHypRef Expression
1 rspcime.2 . 2 (𝜑𝐴𝐵)
2 rspcime.1 . . 3 ((𝜑𝑥 = 𝐴) → 𝜓)
3 simpl 482 . . 3 ((𝜑𝑥 = 𝐴) → 𝜑)
42, 32thd 265 . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜑))
5 id 22 . 2 (𝜑𝜑)
61, 4, 5rspcedvd 3608 1 (𝜑 → ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062
This theorem is referenced by:  elrnmptdv  5950  aks4d1p8d2  42103  mnuprdlem3  44265  mnurndlem1  44272  grumnudlem  44276  grumnud  44277  inaex  44288  gruex  44289
  Copyright terms: Public domain W3C validator