|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rspcime | Structured version Visualization version GIF version | ||
| Description: Prove a restricted existential. (Contributed by Rohan Ridenour, 3-Aug-2023.) | 
| Ref | Expression | 
|---|---|
| rspcime.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓) | 
| rspcime.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) | 
| Ref | Expression | 
|---|---|
| rspcime | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rspcime.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | rspcime.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓) | |
| 3 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜑) | |
| 4 | 2, 3 | 2thd 265 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜑)) | 
| 5 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 6 | 1, 4, 5 | rspcedvd 3624 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 | 
| This theorem is referenced by: elrnmptdv 5976 aks4d1p8d2 42086 mnuprdlem3 44293 mnurndlem1 44300 grumnudlem 44304 grumnud 44305 inaex 44316 gruex 44317 | 
| Copyright terms: Public domain | W3C validator |