![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspcime | Structured version Visualization version GIF version |
Description: Prove a restricted existential. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
rspcime.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓) |
rspcime.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Ref | Expression |
---|---|
rspcime | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcime.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | rspcime.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓) | |
3 | simpl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜑) | |
4 | 2, 3 | 2thd 264 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜑)) |
5 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
6 | 1, 4, 5 | rspcedvd 3610 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 |
This theorem is referenced by: elrnmptdv 5969 aks4d1p8d2 41784 mnuprdlem3 43948 mnurndlem1 43955 grumnudlem 43959 grumnud 43960 inaex 43971 gruex 43972 |
Copyright terms: Public domain | W3C validator |