![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ipoglbdm | Structured version Visualization version GIF version |
Description: The domain of the GLB of the inclusion poset. (Contributed by Zhi Wang, 29-Sep-2024.) |
Ref | Expression |
---|---|
ipolub.i | ⊢ 𝐼 = (toInc‘𝐹) |
ipolub.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
ipolub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐹) |
ipoglb.g | ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) |
ipoglbdm.t | ⊢ (𝜑 → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) |
Ref | Expression |
---|---|
ipoglbdm | ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ 𝑇 ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipolub.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐹) | |
2 | ipolub.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
3 | ipolub.i | . . . . . 6 ⊢ 𝐼 = (toInc‘𝐹) | |
4 | 3 | ipobas 18551 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → 𝐹 = (Base‘𝐼)) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 = (Base‘𝐼)) |
6 | eqidd 2727 | . . . 4 ⊢ (𝜑 → (le‘𝐼) = (le‘𝐼)) | |
7 | ipoglb.g | . . . 4 ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) | |
8 | eqid 2726 | . . . . 5 ⊢ (le‘𝐼) = (le‘𝐼) | |
9 | 3, 2, 1, 8 | ipoglblem 48351 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐹) → ((𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)) ↔ (∀𝑦 ∈ 𝑆 𝑤(le‘𝐼)𝑦 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑤)))) |
10 | 3 | ipopos 18556 | . . . . 5 ⊢ 𝐼 ∈ Poset |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ Poset) |
12 | 5, 6, 7, 9, 11 | glbeldm2d 48329 | . . 3 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐹 ∧ ∃𝑤 ∈ 𝐹 (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))))) |
13 | 1, 12 | mpbirand 705 | . 2 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ ∃𝑤 ∈ 𝐹 (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)))) |
14 | ipoglbdm.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) | |
15 | 14 | ad2antrr 724 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐹) ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) |
16 | unilbeu 48347 | . . . . . . . 8 ⊢ (𝑤 ∈ 𝐹 → ((𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)) ↔ 𝑤 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆})) | |
17 | 16 | biimpa 475 | . . . . . . 7 ⊢ ((𝑤 ∈ 𝐹 ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑤 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) |
18 | 17 | adantll 712 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐹) ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑤 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) |
19 | 15, 18 | eqtr4d 2769 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐹) ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑇 = 𝑤) |
20 | simplr 767 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐹) ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑤 ∈ 𝐹) | |
21 | 19, 20 | eqeltrd 2826 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐹) ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑇 ∈ 𝐹) |
22 | 21 | ex 411 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐹) → ((𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)) → 𝑇 ∈ 𝐹)) |
23 | simpr 483 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → 𝑇 ∈ 𝐹) | |
24 | unilbeu 48347 | . . . . 5 ⊢ (𝑇 ∈ 𝐹 → ((𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇)) ↔ 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆})) | |
25 | 24 | biimparc 478 | . . . 4 ⊢ ((𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆} ∧ 𝑇 ∈ 𝐹) → (𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
26 | 14, 25 | sylan 578 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → (𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
27 | sseq1 4004 | . . . 4 ⊢ (𝑤 = 𝑇 → (𝑤 ⊆ ∩ 𝑆 ↔ 𝑇 ⊆ ∩ 𝑆)) | |
28 | sseq2 4005 | . . . . . 6 ⊢ (𝑤 = 𝑇 → (𝑧 ⊆ 𝑤 ↔ 𝑧 ⊆ 𝑇)) | |
29 | 28 | imbi2d 339 | . . . . 5 ⊢ (𝑤 = 𝑇 → ((𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤) ↔ (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
30 | 29 | ralbidv 3168 | . . . 4 ⊢ (𝑤 = 𝑇 → (∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤) ↔ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
31 | 27, 30 | anbi12d 630 | . . 3 ⊢ (𝑤 = 𝑇 → ((𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)) ↔ (𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇)))) |
32 | 22, 23, 26, 31 | rspceb2dv 3611 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ 𝐹 (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)) ↔ 𝑇 ∈ 𝐹)) |
33 | 13, 32 | bitrd 278 | 1 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ 𝑇 ∈ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∃wrex 3060 {crab 3419 ⊆ wss 3946 ∪ cuni 4905 ∩ cint 4946 dom cdm 5674 ‘cfv 6546 Basecbs 17208 lecple 17268 Posetcpo 18327 glbcglb 18330 toInccipo 18547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-z 12605 df-dec 12724 df-uz 12869 df-fz 13533 df-struct 17144 df-slot 17179 df-ndx 17191 df-base 17209 df-tset 17280 df-ple 17281 df-ocomp 17282 df-proset 18315 df-poset 18333 df-glb 18367 df-ipo 18548 |
This theorem is referenced by: mreclat 48359 topclat 48360 |
Copyright terms: Public domain | W3C validator |