| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ipoglbdm | Structured version Visualization version GIF version | ||
| Description: The domain of the GLB of the inclusion poset. (Contributed by Zhi Wang, 29-Sep-2024.) |
| Ref | Expression |
|---|---|
| ipolub.i | ⊢ 𝐼 = (toInc‘𝐹) |
| ipolub.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| ipolub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐹) |
| ipoglb.g | ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) |
| ipoglbdm.t | ⊢ (𝜑 → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| Ref | Expression |
|---|---|
| ipoglbdm | ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ 𝑇 ∈ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipolub.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐹) | |
| 2 | ipolub.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 3 | ipolub.i | . . . . . 6 ⊢ 𝐼 = (toInc‘𝐹) | |
| 4 | 3 | ipobas 18576 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → 𝐹 = (Base‘𝐼)) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 = (Base‘𝐼)) |
| 6 | eqidd 2738 | . . . 4 ⊢ (𝜑 → (le‘𝐼) = (le‘𝐼)) | |
| 7 | ipoglb.g | . . . 4 ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) | |
| 8 | eqid 2737 | . . . . 5 ⊢ (le‘𝐼) = (le‘𝐼) | |
| 9 | 3, 2, 1, 8 | ipoglblem 48878 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐹) → ((𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)) ↔ (∀𝑦 ∈ 𝑆 𝑤(le‘𝐼)𝑦 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑤)))) |
| 10 | 3 | ipopos 18581 | . . . . 5 ⊢ 𝐼 ∈ Poset |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ Poset) |
| 12 | 5, 6, 7, 9, 11 | glbeldm2d 48856 | . . 3 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐹 ∧ ∃𝑤 ∈ 𝐹 (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))))) |
| 13 | 1, 12 | mpbirand 707 | . 2 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ ∃𝑤 ∈ 𝐹 (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)))) |
| 14 | ipoglbdm.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) | |
| 15 | 14 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐹) ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| 16 | unilbeu 48874 | . . . . . . . 8 ⊢ (𝑤 ∈ 𝐹 → ((𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)) ↔ 𝑤 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆})) | |
| 17 | 16 | biimpa 476 | . . . . . . 7 ⊢ ((𝑤 ∈ 𝐹 ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑤 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| 18 | 17 | adantll 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐹) ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑤 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| 19 | 15, 18 | eqtr4d 2780 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐹) ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑇 = 𝑤) |
| 20 | simplr 769 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐹) ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑤 ∈ 𝐹) | |
| 21 | 19, 20 | eqeltrd 2841 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐹) ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑇 ∈ 𝐹) |
| 22 | 21 | ex 412 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐹) → ((𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)) → 𝑇 ∈ 𝐹)) |
| 23 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → 𝑇 ∈ 𝐹) | |
| 24 | unilbeu 48874 | . . . . 5 ⊢ (𝑇 ∈ 𝐹 → ((𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇)) ↔ 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆})) | |
| 25 | 24 | biimparc 479 | . . . 4 ⊢ ((𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆} ∧ 𝑇 ∈ 𝐹) → (𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
| 26 | 14, 25 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → (𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
| 27 | sseq1 4009 | . . . 4 ⊢ (𝑤 = 𝑇 → (𝑤 ⊆ ∩ 𝑆 ↔ 𝑇 ⊆ ∩ 𝑆)) | |
| 28 | sseq2 4010 | . . . . . 6 ⊢ (𝑤 = 𝑇 → (𝑧 ⊆ 𝑤 ↔ 𝑧 ⊆ 𝑇)) | |
| 29 | 28 | imbi2d 340 | . . . . 5 ⊢ (𝑤 = 𝑇 → ((𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤) ↔ (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
| 30 | 29 | ralbidv 3178 | . . . 4 ⊢ (𝑤 = 𝑇 → (∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤) ↔ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
| 31 | 27, 30 | anbi12d 632 | . . 3 ⊢ (𝑤 = 𝑇 → ((𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)) ↔ (𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇)))) |
| 32 | 22, 23, 26, 31 | rspceb2dv 3626 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ 𝐹 (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)) ↔ 𝑇 ∈ 𝐹)) |
| 33 | 13, 32 | bitrd 279 | 1 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ 𝑇 ∈ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 {crab 3436 ⊆ wss 3951 ∪ cuni 4907 ∩ cint 4946 dom cdm 5685 ‘cfv 6561 Basecbs 17247 lecple 17304 Posetcpo 18353 glbcglb 18356 toInccipo 18572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-tset 17316 df-ple 17317 df-ocomp 17318 df-proset 18340 df-poset 18359 df-glb 18392 df-ipo 18573 |
| This theorem is referenced by: mreclat 48886 topclat 48887 |
| Copyright terms: Public domain | W3C validator |