| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ipoglbdm | Structured version Visualization version GIF version | ||
| Description: The domain of the GLB of the inclusion poset. (Contributed by Zhi Wang, 29-Sep-2024.) |
| Ref | Expression |
|---|---|
| ipolub.i | ⊢ 𝐼 = (toInc‘𝐹) |
| ipolub.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| ipolub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐹) |
| ipoglb.g | ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) |
| ipoglbdm.t | ⊢ (𝜑 → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| Ref | Expression |
|---|---|
| ipoglbdm | ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ 𝑇 ∈ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipolub.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐹) | |
| 2 | ipolub.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 3 | ipolub.i | . . . . . 6 ⊢ 𝐼 = (toInc‘𝐹) | |
| 4 | 3 | ipobas 18546 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → 𝐹 = (Base‘𝐼)) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 = (Base‘𝐼)) |
| 6 | eqidd 2737 | . . . 4 ⊢ (𝜑 → (le‘𝐼) = (le‘𝐼)) | |
| 7 | ipoglb.g | . . . 4 ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) | |
| 8 | eqid 2736 | . . . . 5 ⊢ (le‘𝐼) = (le‘𝐼) | |
| 9 | 3, 2, 1, 8 | ipoglblem 48930 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐹) → ((𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)) ↔ (∀𝑦 ∈ 𝑆 𝑤(le‘𝐼)𝑦 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑤)))) |
| 10 | 3 | ipopos 18551 | . . . . 5 ⊢ 𝐼 ∈ Poset |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ Poset) |
| 12 | 5, 6, 7, 9, 11 | glbeldm2d 48900 | . . 3 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐹 ∧ ∃𝑤 ∈ 𝐹 (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))))) |
| 13 | 1, 12 | mpbirand 707 | . 2 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ ∃𝑤 ∈ 𝐹 (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)))) |
| 14 | ipoglbdm.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) | |
| 15 | 14 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐹) ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| 16 | unilbeu 48926 | . . . . . . . 8 ⊢ (𝑤 ∈ 𝐹 → ((𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)) ↔ 𝑤 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆})) | |
| 17 | 16 | biimpa 476 | . . . . . . 7 ⊢ ((𝑤 ∈ 𝐹 ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑤 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| 18 | 17 | adantll 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐹) ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑤 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| 19 | 15, 18 | eqtr4d 2774 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐹) ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑇 = 𝑤) |
| 20 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐹) ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑤 ∈ 𝐹) | |
| 21 | 19, 20 | eqeltrd 2835 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐹) ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑇 ∈ 𝐹) |
| 22 | 21 | ex 412 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐹) → ((𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)) → 𝑇 ∈ 𝐹)) |
| 23 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → 𝑇 ∈ 𝐹) | |
| 24 | unilbeu 48926 | . . . . 5 ⊢ (𝑇 ∈ 𝐹 → ((𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇)) ↔ 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆})) | |
| 25 | 24 | biimparc 479 | . . . 4 ⊢ ((𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆} ∧ 𝑇 ∈ 𝐹) → (𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
| 26 | 14, 25 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → (𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
| 27 | sseq1 3989 | . . . 4 ⊢ (𝑤 = 𝑇 → (𝑤 ⊆ ∩ 𝑆 ↔ 𝑇 ⊆ ∩ 𝑆)) | |
| 28 | sseq2 3990 | . . . . . 6 ⊢ (𝑤 = 𝑇 → (𝑧 ⊆ 𝑤 ↔ 𝑧 ⊆ 𝑇)) | |
| 29 | 28 | imbi2d 340 | . . . . 5 ⊢ (𝑤 = 𝑇 → ((𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤) ↔ (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
| 30 | 29 | ralbidv 3164 | . . . 4 ⊢ (𝑤 = 𝑇 → (∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤) ↔ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
| 31 | 27, 30 | anbi12d 632 | . . 3 ⊢ (𝑤 = 𝑇 → ((𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)) ↔ (𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇)))) |
| 32 | 22, 23, 26, 31 | rspceb2dv 3610 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ 𝐹 (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)) ↔ 𝑇 ∈ 𝐹)) |
| 33 | 13, 32 | bitrd 279 | 1 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ 𝑇 ∈ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 {crab 3420 ⊆ wss 3931 ∪ cuni 4888 ∩ cint 4927 dom cdm 5659 ‘cfv 6536 Basecbs 17233 lecple 17283 Posetcpo 18324 glbcglb 18327 toInccipo 18542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-tset 17295 df-ple 17296 df-ocomp 17297 df-proset 18311 df-poset 18330 df-glb 18362 df-ipo 18543 |
| This theorem is referenced by: mreclat 48938 topclat 48939 |
| Copyright terms: Public domain | W3C validator |