Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ipoglbdm Structured version   Visualization version   GIF version

Theorem ipoglbdm 48931
Description: The domain of the GLB of the inclusion poset. (Contributed by Zhi Wang, 29-Sep-2024.)
Hypotheses
Ref Expression
ipolub.i 𝐼 = (toInc‘𝐹)
ipolub.f (𝜑𝐹𝑉)
ipolub.s (𝜑𝑆𝐹)
ipoglb.g (𝜑𝐺 = (glb‘𝐼))
ipoglbdm.t (𝜑𝑇 = {𝑥𝐹𝑥 𝑆})
Assertion
Ref Expression
ipoglbdm (𝜑 → (𝑆 ∈ dom 𝐺𝑇𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem ipoglbdm
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipolub.s . . 3 (𝜑𝑆𝐹)
2 ipolub.f . . . . 5 (𝜑𝐹𝑉)
3 ipolub.i . . . . . 6 𝐼 = (toInc‘𝐹)
43ipobas 18546 . . . . 5 (𝐹𝑉𝐹 = (Base‘𝐼))
52, 4syl 17 . . . 4 (𝜑𝐹 = (Base‘𝐼))
6 eqidd 2737 . . . 4 (𝜑 → (le‘𝐼) = (le‘𝐼))
7 ipoglb.g . . . 4 (𝜑𝐺 = (glb‘𝐼))
8 eqid 2736 . . . . 5 (le‘𝐼) = (le‘𝐼)
93, 2, 1, 8ipoglblem 48930 . . . 4 ((𝜑𝑤𝐹) → ((𝑤 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑤)) ↔ (∀𝑦𝑆 𝑤(le‘𝐼)𝑦 ∧ ∀𝑧𝐹 (∀𝑦𝑆 𝑧(le‘𝐼)𝑦𝑧(le‘𝐼)𝑤))))
103ipopos 18551 . . . . 5 𝐼 ∈ Poset
1110a1i 11 . . . 4 (𝜑𝐼 ∈ Poset)
125, 6, 7, 9, 11glbeldm2d 48900 . . 3 (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐹 ∧ ∃𝑤𝐹 (𝑤 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑤)))))
131, 12mpbirand 707 . 2 (𝜑 → (𝑆 ∈ dom 𝐺 ↔ ∃𝑤𝐹 (𝑤 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑤))))
14 ipoglbdm.t . . . . . . 7 (𝜑𝑇 = {𝑥𝐹𝑥 𝑆})
1514ad2antrr 726 . . . . . 6 (((𝜑𝑤𝐹) ∧ (𝑤 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑤))) → 𝑇 = {𝑥𝐹𝑥 𝑆})
16 unilbeu 48926 . . . . . . . 8 (𝑤𝐹 → ((𝑤 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑤)) ↔ 𝑤 = {𝑥𝐹𝑥 𝑆}))
1716biimpa 476 . . . . . . 7 ((𝑤𝐹 ∧ (𝑤 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑤))) → 𝑤 = {𝑥𝐹𝑥 𝑆})
1817adantll 714 . . . . . 6 (((𝜑𝑤𝐹) ∧ (𝑤 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑤))) → 𝑤 = {𝑥𝐹𝑥 𝑆})
1915, 18eqtr4d 2774 . . . . 5 (((𝜑𝑤𝐹) ∧ (𝑤 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑤))) → 𝑇 = 𝑤)
20 simplr 768 . . . . 5 (((𝜑𝑤𝐹) ∧ (𝑤 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑤))) → 𝑤𝐹)
2119, 20eqeltrd 2835 . . . 4 (((𝜑𝑤𝐹) ∧ (𝑤 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑤))) → 𝑇𝐹)
2221ex 412 . . 3 ((𝜑𝑤𝐹) → ((𝑤 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑤)) → 𝑇𝐹))
23 simpr 484 . . 3 ((𝜑𝑇𝐹) → 𝑇𝐹)
24 unilbeu 48926 . . . . 5 (𝑇𝐹 → ((𝑇 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑇)) ↔ 𝑇 = {𝑥𝐹𝑥 𝑆}))
2524biimparc 479 . . . 4 ((𝑇 = {𝑥𝐹𝑥 𝑆} ∧ 𝑇𝐹) → (𝑇 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑇)))
2614, 25sylan 580 . . 3 ((𝜑𝑇𝐹) → (𝑇 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑇)))
27 sseq1 3989 . . . 4 (𝑤 = 𝑇 → (𝑤 𝑆𝑇 𝑆))
28 sseq2 3990 . . . . . 6 (𝑤 = 𝑇 → (𝑧𝑤𝑧𝑇))
2928imbi2d 340 . . . . 5 (𝑤 = 𝑇 → ((𝑧 𝑆𝑧𝑤) ↔ (𝑧 𝑆𝑧𝑇)))
3029ralbidv 3164 . . . 4 (𝑤 = 𝑇 → (∀𝑧𝐹 (𝑧 𝑆𝑧𝑤) ↔ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑇)))
3127, 30anbi12d 632 . . 3 (𝑤 = 𝑇 → ((𝑤 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑤)) ↔ (𝑇 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑇))))
3222, 23, 26, 31rspceb2dv 3610 . 2 (𝜑 → (∃𝑤𝐹 (𝑤 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑤)) ↔ 𝑇𝐹))
3313, 32bitrd 279 1 (𝜑 → (𝑆 ∈ dom 𝐺𝑇𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  {crab 3420  wss 3931   cuni 4888   cint 4927  dom cdm 5659  cfv 6536  Basecbs 17233  lecple 17283  Posetcpo 18324  glbcglb 18327  toInccipo 18542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-tset 17295  df-ple 17296  df-ocomp 17297  df-proset 18311  df-poset 18330  df-glb 18362  df-ipo 18543
This theorem is referenced by:  mreclat  48938  topclat  48939
  Copyright terms: Public domain W3C validator