| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ipoglbdm | Structured version Visualization version GIF version | ||
| Description: The domain of the GLB of the inclusion poset. (Contributed by Zhi Wang, 29-Sep-2024.) |
| Ref | Expression |
|---|---|
| ipolub.i | ⊢ 𝐼 = (toInc‘𝐹) |
| ipolub.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| ipolub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐹) |
| ipoglb.g | ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) |
| ipoglbdm.t | ⊢ (𝜑 → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| Ref | Expression |
|---|---|
| ipoglbdm | ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ 𝑇 ∈ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipolub.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐹) | |
| 2 | ipolub.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 3 | ipolub.i | . . . . . 6 ⊢ 𝐼 = (toInc‘𝐹) | |
| 4 | 3 | ipobas 18437 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → 𝐹 = (Base‘𝐼)) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 = (Base‘𝐼)) |
| 6 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (le‘𝐼) = (le‘𝐼)) | |
| 7 | ipoglb.g | . . . 4 ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) | |
| 8 | eqid 2729 | . . . . 5 ⊢ (le‘𝐼) = (le‘𝐼) | |
| 9 | 3, 2, 1, 8 | ipoglblem 48983 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐹) → ((𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)) ↔ (∀𝑦 ∈ 𝑆 𝑤(le‘𝐼)𝑦 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑤)))) |
| 10 | 3 | ipopos 18442 | . . . . 5 ⊢ 𝐼 ∈ Poset |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ Poset) |
| 12 | 5, 6, 7, 9, 11 | glbeldm2d 48953 | . . 3 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐹 ∧ ∃𝑤 ∈ 𝐹 (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))))) |
| 13 | 1, 12 | mpbirand 707 | . 2 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ ∃𝑤 ∈ 𝐹 (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)))) |
| 14 | ipoglbdm.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) | |
| 15 | 14 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐹) ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| 16 | unilbeu 48979 | . . . . . . . 8 ⊢ (𝑤 ∈ 𝐹 → ((𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)) ↔ 𝑤 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆})) | |
| 17 | 16 | biimpa 476 | . . . . . . 7 ⊢ ((𝑤 ∈ 𝐹 ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑤 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| 18 | 17 | adantll 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐹) ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑤 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| 19 | 15, 18 | eqtr4d 2767 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐹) ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑇 = 𝑤) |
| 20 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐹) ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑤 ∈ 𝐹) | |
| 21 | 19, 20 | eqeltrd 2828 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐹) ∧ (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤))) → 𝑇 ∈ 𝐹) |
| 22 | 21 | ex 412 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐹) → ((𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)) → 𝑇 ∈ 𝐹)) |
| 23 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → 𝑇 ∈ 𝐹) | |
| 24 | unilbeu 48979 | . . . . 5 ⊢ (𝑇 ∈ 𝐹 → ((𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇)) ↔ 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆})) | |
| 25 | 24 | biimparc 479 | . . . 4 ⊢ ((𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆} ∧ 𝑇 ∈ 𝐹) → (𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
| 26 | 14, 25 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → (𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
| 27 | sseq1 3961 | . . . 4 ⊢ (𝑤 = 𝑇 → (𝑤 ⊆ ∩ 𝑆 ↔ 𝑇 ⊆ ∩ 𝑆)) | |
| 28 | sseq2 3962 | . . . . . 6 ⊢ (𝑤 = 𝑇 → (𝑧 ⊆ 𝑤 ↔ 𝑧 ⊆ 𝑇)) | |
| 29 | 28 | imbi2d 340 | . . . . 5 ⊢ (𝑤 = 𝑇 → ((𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤) ↔ (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
| 30 | 29 | ralbidv 3152 | . . . 4 ⊢ (𝑤 = 𝑇 → (∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤) ↔ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
| 31 | 27, 30 | anbi12d 632 | . . 3 ⊢ (𝑤 = 𝑇 → ((𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)) ↔ (𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇)))) |
| 32 | 22, 23, 26, 31 | rspceb2dv 3581 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ 𝐹 (𝑤 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤)) ↔ 𝑇 ∈ 𝐹)) |
| 33 | 13, 32 | bitrd 279 | 1 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ 𝑇 ∈ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3394 ⊆ wss 3903 ∪ cuni 4858 ∩ cint 4896 dom cdm 5619 ‘cfv 6482 Basecbs 17120 lecple 17168 Posetcpo 18213 glbcglb 18216 toInccipo 18433 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-tset 17180 df-ple 17181 df-ocomp 17182 df-proset 18200 df-poset 18219 df-glb 18251 df-ipo 18434 |
| This theorem is referenced by: mreclat 48991 topclat 48992 |
| Copyright terms: Public domain | W3C validator |