Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspcev | Structured version Visualization version GIF version |
Description: Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) Drop ax-10 2139, ax-11 2156, ax-12 2173. (Revised by SN, 12-Dec-2023.) |
Ref | Expression |
---|---|
rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspcev | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐵) | |
2 | rspcv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
4 | 1, 3 | rspcedv 3544 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝜓 → ∃𝑥 ∈ 𝐵 𝜑)) |
5 | 4 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
Copyright terms: Public domain | W3C validator |