Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbc2rexgOLD Structured version   Visualization version   GIF version

Theorem sbc2rexgOLD 40610
Description: Exchange a substitution with two existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) Obsolete as of 24-Aug-2018. Use csbov123 7317 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbc2rexgOLD (𝐴𝑉 → ([𝐴 / 𝑎]𝑏𝐵𝑐𝐶 𝜑 ↔ ∃𝑏𝐵𝑐𝐶 [𝐴 / 𝑎]𝜑))
Distinct variable groups:   𝐴,𝑏   𝐴,𝑐   𝐵,𝑎   𝐶,𝑎   𝑎,𝑏   𝑎,𝑐
Allowed substitution hints:   𝜑(𝑎,𝑏,𝑐)   𝐴(𝑎)   𝐵(𝑏,𝑐)   𝐶(𝑏,𝑐)   𝑉(𝑎,𝑏,𝑐)

Proof of Theorem sbc2rexgOLD
StepHypRef Expression
1 elex 3450 . 2 (𝐴𝑉𝐴 ∈ V)
2 sbcrexgOLD 40607 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑎]𝑏𝐵𝑐𝐶 𝜑 ↔ ∃𝑏𝐵 [𝐴 / 𝑎]𝑐𝐶 𝜑))
3 sbcrexgOLD 40607 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑎]𝑐𝐶 𝜑 ↔ ∃𝑐𝐶 [𝐴 / 𝑎]𝜑))
43rexbidv 3226 . . 3 (𝐴 ∈ V → (∃𝑏𝐵 [𝐴 / 𝑎]𝑐𝐶 𝜑 ↔ ∃𝑏𝐵𝑐𝐶 [𝐴 / 𝑎]𝜑))
52, 4bitrd 278 . 2 (𝐴 ∈ V → ([𝐴 / 𝑎]𝑏𝐵𝑐𝐶 𝜑 ↔ ∃𝑏𝐵𝑐𝐶 [𝐴 / 𝑎]𝜑))
61, 5syl 17 1 (𝐴𝑉 → ([𝐴 / 𝑎]𝑏𝐵𝑐𝐶 𝜑 ↔ ∃𝑏𝐵𝑐𝐶 [𝐴 / 𝑎]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  wrex 3065  Vcvv 3432  [wsbc 3716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-v 3434  df-sbc 3717
This theorem is referenced by:  sbc4rexgOLD  40612
  Copyright terms: Public domain W3C validator