| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbc2rex | Structured version Visualization version GIF version | ||
| Description: Exchange a substitution with two existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by NM, 24-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbc2rex | ⊢ ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcrex 3857 | . 2 ⊢ ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑏 ∈ 𝐵 [𝐴 / 𝑎]∃𝑐 ∈ 𝐶 𝜑) | |
| 2 | sbcrex 3857 | . . 3 ⊢ ([𝐴 / 𝑎]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]𝜑) | |
| 3 | 2 | rexbii 3082 | . 2 ⊢ (∃𝑏 ∈ 𝐵 [𝐴 / 𝑎]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]𝜑) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wrex 3059 [wsbc 3772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-v 3466 df-sbc 3773 |
| This theorem is referenced by: sbc4rex 42745 3rexfrabdioph 42753 4rexfrabdioph 42754 7rexfrabdioph 42756 |
| Copyright terms: Public domain | W3C validator |