![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbc2rex | Structured version Visualization version GIF version |
Description: Exchange a substitution with two existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by NM, 24-Aug-2018.) |
Ref | Expression |
---|---|
sbc2rex | ⊢ ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcrex 3870 | . 2 ⊢ ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑏 ∈ 𝐵 [𝐴 / 𝑎]∃𝑐 ∈ 𝐶 𝜑) | |
2 | sbcrex 3870 | . . 3 ⊢ ([𝐴 / 𝑎]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]𝜑) | |
3 | 2 | rexbii 3095 | . 2 ⊢ (∃𝑏 ∈ 𝐵 [𝐴 / 𝑎]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]𝜑) |
4 | 1, 3 | bitri 275 | 1 ⊢ ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wrex 3071 [wsbc 3778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-v 3477 df-sbc 3779 |
This theorem is referenced by: sbc4rex 41527 3rexfrabdioph 41535 4rexfrabdioph 41536 7rexfrabdioph 41538 |
Copyright terms: Public domain | W3C validator |