Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbc2rex Structured version   Visualization version   GIF version

Theorem sbc2rex 41525
Description: Exchange a substitution with two existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by NM, 24-Aug-2018.)
Assertion
Ref Expression
sbc2rex ([𝐴 / 𝑎]𝑏𝐵𝑐𝐶 𝜑 ↔ ∃𝑏𝐵𝑐𝐶 [𝐴 / 𝑎]𝜑)
Distinct variable groups:   𝐴,𝑏   𝐴,𝑐   𝐵,𝑎   𝐶,𝑎   𝑎,𝑏   𝑎,𝑐
Allowed substitution hints:   𝜑(𝑎,𝑏,𝑐)   𝐴(𝑎)   𝐵(𝑏,𝑐)   𝐶(𝑏,𝑐)

Proof of Theorem sbc2rex
StepHypRef Expression
1 sbcrex 3870 . 2 ([𝐴 / 𝑎]𝑏𝐵𝑐𝐶 𝜑 ↔ ∃𝑏𝐵 [𝐴 / 𝑎]𝑐𝐶 𝜑)
2 sbcrex 3870 . . 3 ([𝐴 / 𝑎]𝑐𝐶 𝜑 ↔ ∃𝑐𝐶 [𝐴 / 𝑎]𝜑)
32rexbii 3095 . 2 (∃𝑏𝐵 [𝐴 / 𝑎]𝑐𝐶 𝜑 ↔ ∃𝑏𝐵𝑐𝐶 [𝐴 / 𝑎]𝜑)
41, 3bitri 275 1 ([𝐴 / 𝑎]𝑏𝐵𝑐𝐶 𝜑 ↔ ∃𝑏𝐵𝑐𝐶 [𝐴 / 𝑎]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wrex 3071  [wsbc 3778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-v 3477  df-sbc 3779
This theorem is referenced by:  sbc4rex  41527  3rexfrabdioph  41535  4rexfrabdioph  41536  7rexfrabdioph  41538
  Copyright terms: Public domain W3C validator