MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbov123 Structured version   Visualization version   GIF version

Theorem csbov123 7198
Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) (Revised by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbov123 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)

Proof of Theorem csbov123
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3810 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥(𝐵𝐹𝐶) = 𝐴 / 𝑥(𝐵𝐹𝐶))
2 csbeq1 3810 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
3 csbeq1 3810 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
4 csbeq1 3810 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
52, 3, 4oveq123d 7177 . . . 4 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶))
61, 5eqeq12d 2774 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐵𝐹𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶) ↔ 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)))
7 vex 3413 . . . 4 𝑦 ∈ V
8 nfcsb1v 3831 . . . . 5 𝑥𝑦 / 𝑥𝐵
9 nfcsb1v 3831 . . . . 5 𝑥𝑦 / 𝑥𝐹
10 nfcsb1v 3831 . . . . 5 𝑥𝑦 / 𝑥𝐶
118, 9, 10nfov 7186 . . . 4 𝑥(𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)
12 csbeq1a 3821 . . . . 5 (𝑥 = 𝑦𝐹 = 𝑦 / 𝑥𝐹)
13 csbeq1a 3821 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
14 csbeq1a 3821 . . . . 5 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1512, 13, 14oveq123d 7177 . . . 4 (𝑥 = 𝑦 → (𝐵𝐹𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶))
167, 11, 15csbief 3841 . . 3 𝑦 / 𝑥(𝐵𝐹𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)
176, 16vtoclg 3487 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶))
18 csbprc 4305 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐹𝐶) = ∅)
19 df-ov 7159 . . . 4 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶) = (𝐴 / 𝑥𝐹‘⟨𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶⟩)
20 csbprc 4305 . . . . . 6 𝐴 ∈ V → 𝐴 / 𝑥𝐹 = ∅)
2120fveq1d 6665 . . . . 5 𝐴 ∈ V → (𝐴 / 𝑥𝐹‘⟨𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶⟩) = (∅‘⟨𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶⟩))
22 0fv 6702 . . . . 5 (∅‘⟨𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶⟩) = ∅
2321, 22eqtrdi 2809 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐹‘⟨𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶⟩) = ∅)
2419, 23syl5req 2806 . . 3 𝐴 ∈ V → ∅ = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶))
2518, 24eqtrd 2793 . 2 𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶))
2617, 25pm2.61i 185 1 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1538  wcel 2111  Vcvv 3409  csb 3807  c0 4227  cop 4531  cfv 6340  (class class class)co 7156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-dm 5538  df-iota 6299  df-fv 6348  df-ov 7159
This theorem is referenced by:  csbov  7199  csbov12g  7200  relowlpssretop  35096  rdgeqoa  35102
  Copyright terms: Public domain W3C validator