| Step | Hyp | Ref
| Expression |
| 1 | | csbeq1 3902 |
. . . 4
⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐵𝐹𝐶) = ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶)) |
| 2 | | csbeq1 3902 |
. . . . 5
⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌𝐹) |
| 3 | | csbeq1 3902 |
. . . . 5
⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) |
| 4 | | csbeq1 3902 |
. . . . 5
⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) |
| 5 | 2, 3, 4 | oveq123d 7452 |
. . . 4
⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) |
| 6 | 1, 5 | eqeq12d 2753 |
. . 3
⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶) ↔ ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶))) |
| 7 | | vex 3484 |
. . . 4
⊢ 𝑦 ∈ V |
| 8 | | nfcsb1v 3923 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
| 9 | | nfcsb1v 3923 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐹 |
| 10 | | nfcsb1v 3923 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 |
| 11 | 8, 9, 10 | nfov 7461 |
. . . 4
⊢
Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶) |
| 12 | | csbeq1a 3913 |
. . . . 5
⊢ (𝑥 = 𝑦 → 𝐹 = ⦋𝑦 / 𝑥⦌𝐹) |
| 13 | | csbeq1a 3913 |
. . . . 5
⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
| 14 | | csbeq1a 3913 |
. . . . 5
⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) |
| 15 | 12, 13, 14 | oveq123d 7452 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝐵𝐹𝐶) = (⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) |
| 16 | 7, 11, 15 | csbief 3933 |
. . 3
⊢
⦋𝑦 /
𝑥⦌(𝐵𝐹𝐶) = (⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶) |
| 17 | 6, 16 | vtoclg 3554 |
. 2
⊢ (𝐴 ∈ V →
⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) |
| 18 | | csbprc 4409 |
. . 3
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = ∅) |
| 19 | | df-ov 7434 |
. . . 4
⊢
(⦋𝐴 /
𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐹‘〈⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶〉) |
| 20 | | csbprc 4409 |
. . . . . 6
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌𝐹 = ∅) |
| 21 | 20 | fveq1d 6908 |
. . . . 5
⊢ (¬
𝐴 ∈ V →
(⦋𝐴 / 𝑥⦌𝐹‘〈⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶〉) =
(∅‘〈⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶〉)) |
| 22 | | 0fv 6950 |
. . . . 5
⊢
(∅‘〈⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶〉) = ∅ |
| 23 | 21, 22 | eqtrdi 2793 |
. . . 4
⊢ (¬
𝐴 ∈ V →
(⦋𝐴 / 𝑥⦌𝐹‘〈⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶〉) = ∅) |
| 24 | 19, 23 | eqtr2id 2790 |
. . 3
⊢ (¬
𝐴 ∈ V → ∅ =
(⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) |
| 25 | 18, 24 | eqtrd 2777 |
. 2
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) |
| 26 | 17, 25 | pm2.61i 182 |
1
⊢
⦋𝐴 /
𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) |