Step | Hyp | Ref
| Expression |
1 | | csbeq1 3835 |
. . . 4
⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐵𝐹𝐶) = ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶)) |
2 | | csbeq1 3835 |
. . . . 5
⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌𝐹) |
3 | | csbeq1 3835 |
. . . . 5
⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) |
4 | | csbeq1 3835 |
. . . . 5
⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) |
5 | 2, 3, 4 | oveq123d 7296 |
. . . 4
⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) |
6 | 1, 5 | eqeq12d 2754 |
. . 3
⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶) ↔ ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶))) |
7 | | vex 3436 |
. . . 4
⊢ 𝑦 ∈ V |
8 | | nfcsb1v 3857 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
9 | | nfcsb1v 3857 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐹 |
10 | | nfcsb1v 3857 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 |
11 | 8, 9, 10 | nfov 7305 |
. . . 4
⊢
Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶) |
12 | | csbeq1a 3846 |
. . . . 5
⊢ (𝑥 = 𝑦 → 𝐹 = ⦋𝑦 / 𝑥⦌𝐹) |
13 | | csbeq1a 3846 |
. . . . 5
⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
14 | | csbeq1a 3846 |
. . . . 5
⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) |
15 | 12, 13, 14 | oveq123d 7296 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝐵𝐹𝐶) = (⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶)) |
16 | 7, 11, 15 | csbief 3867 |
. . 3
⊢
⦋𝑦 /
𝑥⦌(𝐵𝐹𝐶) = (⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝐹⦋𝑦 / 𝑥⦌𝐶) |
17 | 6, 16 | vtoclg 3505 |
. 2
⊢ (𝐴 ∈ V →
⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) |
18 | | csbprc 4340 |
. . 3
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = ∅) |
19 | | df-ov 7278 |
. . . 4
⊢
(⦋𝐴 /
𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐹‘〈⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶〉) |
20 | | csbprc 4340 |
. . . . . 6
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌𝐹 = ∅) |
21 | 20 | fveq1d 6776 |
. . . . 5
⊢ (¬
𝐴 ∈ V →
(⦋𝐴 / 𝑥⦌𝐹‘〈⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶〉) =
(∅‘〈⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶〉)) |
22 | | 0fv 6813 |
. . . . 5
⊢
(∅‘〈⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶〉) = ∅ |
23 | 21, 22 | eqtrdi 2794 |
. . . 4
⊢ (¬
𝐴 ∈ V →
(⦋𝐴 / 𝑥⦌𝐹‘〈⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶〉) = ∅) |
24 | 19, 23 | eqtr2id 2791 |
. . 3
⊢ (¬
𝐴 ∈ V → ∅ =
(⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) |
25 | 18, 24 | eqtrd 2778 |
. 2
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) |
26 | 17, 25 | pm2.61i 182 |
1
⊢
⦋𝐴 /
𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) |