MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbov123 Structured version   Visualization version   GIF version

Theorem csbov123 7399
Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) (Revised by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbov123 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)

Proof of Theorem csbov123
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3849 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥(𝐵𝐹𝐶) = 𝐴 / 𝑥(𝐵𝐹𝐶))
2 csbeq1 3849 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
3 csbeq1 3849 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
4 csbeq1 3849 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
52, 3, 4oveq123d 7376 . . . 4 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶))
61, 5eqeq12d 2749 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐵𝐹𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶) ↔ 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)))
7 vex 3441 . . . 4 𝑦 ∈ V
8 nfcsb1v 3870 . . . . 5 𝑥𝑦 / 𝑥𝐵
9 nfcsb1v 3870 . . . . 5 𝑥𝑦 / 𝑥𝐹
10 nfcsb1v 3870 . . . . 5 𝑥𝑦 / 𝑥𝐶
118, 9, 10nfov 7385 . . . 4 𝑥(𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)
12 csbeq1a 3860 . . . . 5 (𝑥 = 𝑦𝐹 = 𝑦 / 𝑥𝐹)
13 csbeq1a 3860 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
14 csbeq1a 3860 . . . . 5 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1512, 13, 14oveq123d 7376 . . . 4 (𝑥 = 𝑦 → (𝐵𝐹𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶))
167, 11, 15csbief 3880 . . 3 𝑦 / 𝑥(𝐵𝐹𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)
176, 16vtoclg 3508 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶))
18 csbprc 4358 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐹𝐶) = ∅)
19 df-ov 7358 . . . 4 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶) = (𝐴 / 𝑥𝐹‘⟨𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶⟩)
20 csbprc 4358 . . . . . 6 𝐴 ∈ V → 𝐴 / 𝑥𝐹 = ∅)
2120fveq1d 6833 . . . . 5 𝐴 ∈ V → (𝐴 / 𝑥𝐹‘⟨𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶⟩) = (∅‘⟨𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶⟩))
22 0fv 6872 . . . . 5 (∅‘⟨𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶⟩) = ∅
2321, 22eqtrdi 2784 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐹‘⟨𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶⟩) = ∅)
2419, 23eqtr2id 2781 . . 3 𝐴 ∈ V → ∅ = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶))
2518, 24eqtrd 2768 . 2 𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶))
2617, 25pm2.61i 182 1 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2113  Vcvv 3437  csb 3846  c0 4282  cop 4583  cfv 6489  (class class class)co 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-dm 5631  df-iota 6445  df-fv 6497  df-ov 7358
This theorem is referenced by:  csbov  7400  csbov12g  7401  csbfrecsg  8223  relowlpssretop  37481  rdgeqoa  37487
  Copyright terms: Public domain W3C validator