MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbov123 Structured version   Visualization version   GIF version

Theorem csbov123 7431
Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) (Revised by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbov123 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)

Proof of Theorem csbov123
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3865 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥(𝐵𝐹𝐶) = 𝐴 / 𝑥(𝐵𝐹𝐶))
2 csbeq1 3865 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
3 csbeq1 3865 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
4 csbeq1 3865 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
52, 3, 4oveq123d 7408 . . . 4 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶))
61, 5eqeq12d 2745 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐵𝐹𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶) ↔ 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)))
7 vex 3451 . . . 4 𝑦 ∈ V
8 nfcsb1v 3886 . . . . 5 𝑥𝑦 / 𝑥𝐵
9 nfcsb1v 3886 . . . . 5 𝑥𝑦 / 𝑥𝐹
10 nfcsb1v 3886 . . . . 5 𝑥𝑦 / 𝑥𝐶
118, 9, 10nfov 7417 . . . 4 𝑥(𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)
12 csbeq1a 3876 . . . . 5 (𝑥 = 𝑦𝐹 = 𝑦 / 𝑥𝐹)
13 csbeq1a 3876 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
14 csbeq1a 3876 . . . . 5 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1512, 13, 14oveq123d 7408 . . . 4 (𝑥 = 𝑦 → (𝐵𝐹𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶))
167, 11, 15csbief 3896 . . 3 𝑦 / 𝑥(𝐵𝐹𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)
176, 16vtoclg 3520 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶))
18 csbprc 4372 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐹𝐶) = ∅)
19 df-ov 7390 . . . 4 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶) = (𝐴 / 𝑥𝐹‘⟨𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶⟩)
20 csbprc 4372 . . . . . 6 𝐴 ∈ V → 𝐴 / 𝑥𝐹 = ∅)
2120fveq1d 6860 . . . . 5 𝐴 ∈ V → (𝐴 / 𝑥𝐹‘⟨𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶⟩) = (∅‘⟨𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶⟩))
22 0fv 6902 . . . . 5 (∅‘⟨𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶⟩) = ∅
2321, 22eqtrdi 2780 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐹‘⟨𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶⟩) = ∅)
2419, 23eqtr2id 2777 . . 3 𝐴 ∈ V → ∅ = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶))
2518, 24eqtrd 2764 . 2 𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶))
2617, 25pm2.61i 182 1 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3447  csb 3862  c0 4296  cop 4595  cfv 6511  (class class class)co 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-dm 5648  df-iota 6464  df-fv 6519  df-ov 7390
This theorem is referenced by:  csbov  7432  csbov12g  7433  csbfrecsg  8263  relowlpssretop  37352  rdgeqoa  37358
  Copyright terms: Public domain W3C validator