| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcrexgOLD | Structured version Visualization version GIF version | ||
| Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) Obsolete as of 18-Aug-2018. Use sbcrex 3841 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| sbcrexgOLD | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 3759 | . 2 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ [𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑)) | |
| 2 | dfsbcq2 3759 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 2 | rexbidv 3158 | . 2 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
| 4 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 5 | nfs1v 2157 | . . . 4 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
| 6 | 4, 5 | nfrexw 3289 | . . 3 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 |
| 7 | sbequ12 2252 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 8 | 7 | rexbidv 3158 | . . 3 ⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑)) |
| 9 | 6, 8 | sbie 2501 | . 2 ⊢ ([𝑧 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) |
| 10 | 1, 3, 9 | vtoclbg 3526 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2065 ∈ wcel 2109 ∃wrex 3054 [wsbc 3756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2371 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-sbc 3757 |
| This theorem is referenced by: 2sbcrexOLD 42781 sbc2rexgOLD 42783 |
| Copyright terms: Public domain | W3C validator |