![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcrexgOLD | Structured version Visualization version GIF version |
Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) Obsolete as of 18-Aug-2018. Use sbcrex 3884 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbcrexgOLD | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3794 | . 2 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ [𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑)) | |
2 | dfsbcq2 3794 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 2 | rexbidv 3177 | . 2 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
4 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
5 | nfs1v 2154 | . . . 4 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
6 | 4, 5 | nfrexw 3311 | . . 3 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 |
7 | sbequ12 2249 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
8 | 7 | rexbidv 3177 | . . 3 ⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑)) |
9 | 6, 8 | sbie 2505 | . 2 ⊢ ([𝑧 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) |
10 | 1, 3, 9 | vtoclbg 3557 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 [wsb 2062 ∈ wcel 2106 ∃wrex 3068 [wsbc 3791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-13 2375 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-sbc 3792 |
This theorem is referenced by: 2sbcrexOLD 42774 sbc2rexgOLD 42776 |
Copyright terms: Public domain | W3C validator |