Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcrexgOLD Structured version   Visualization version   GIF version

Theorem sbcrexgOLD 41826
Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) Obsolete as of 18-Aug-2018. Use sbcrex 3870 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbcrexgOLD (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbcrexgOLD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3781 . 2 (𝑧 = 𝐴 → ([𝑧 / 𝑥]∃𝑦𝐵 𝜑[𝐴 / 𝑥]𝑦𝐵 𝜑))
2 dfsbcq2 3781 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
32rexbidv 3177 . 2 (𝑧 = 𝐴 → (∃𝑦𝐵 [𝑧 / 𝑥]𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
4 nfcv 2902 . . . 4 𝑥𝐵
5 nfs1v 2152 . . . 4 𝑥[𝑧 / 𝑥]𝜑
64, 5nfrexw 3309 . . 3 𝑥𝑦𝐵 [𝑧 / 𝑥]𝜑
7 sbequ12 2242 . . . 4 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
87rexbidv 3177 . . 3 (𝑥 = 𝑧 → (∃𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑧 / 𝑥]𝜑))
96, 8sbie 2500 . 2 ([𝑧 / 𝑥]∃𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑧 / 𝑥]𝜑)
101, 3, 9vtoclbg 3560 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  [wsb 2066  wcel 2105  wrex 3069  [wsbc 3778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-13 2370  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-sbc 3779
This theorem is referenced by:  2sbcrexOLD  41827  sbc2rexgOLD  41829
  Copyright terms: Public domain W3C validator