![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcrexgOLD | Structured version Visualization version GIF version |
Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) Obsolete as of 18-Aug-2018. Use sbcrex 3897 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbcrexgOLD | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3807 | . 2 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ [𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑)) | |
2 | dfsbcq2 3807 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 2 | rexbidv 3185 | . 2 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
4 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
5 | nfs1v 2157 | . . . 4 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
6 | 4, 5 | nfrexw 3319 | . . 3 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 |
7 | sbequ12 2252 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
8 | 7 | rexbidv 3185 | . . 3 ⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑)) |
9 | 6, 8 | sbie 2510 | . 2 ⊢ ([𝑧 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) |
10 | 1, 3, 9 | vtoclbg 3569 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 [wsb 2064 ∈ wcel 2108 ∃wrex 3076 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-13 2380 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-sbc 3805 |
This theorem is referenced by: 2sbcrexOLD 42742 sbc2rexgOLD 42744 |
Copyright terms: Public domain | W3C validator |