Step | Hyp | Ref
| Expression |
1 | | df-conngr 29437 |
. 2
β’ ConnGraph
= {π β£
[(Vtxβπ) /
π£]βπ β π£ βπ β π£ βπβπ π(π(PathsOnβπ)π)π} |
2 | | eqid 2732 |
. . . . . . . . 9
β’
(Vtxβπ) =
(Vtxβπ) |
3 | 2 | 0pthonv 29379 |
. . . . . . . 8
β’ (π β (Vtxβπ) β βπβπ π(π(PathsOnβπ)π)π) |
4 | | oveq2 7416 |
. . . . . . . . . . 11
β’ (π = π β (π(PathsOnβπ)π) = (π(PathsOnβπ)π)) |
5 | 4 | breqd 5159 |
. . . . . . . . . 10
β’ (π = π β (π(π(PathsOnβπ)π)π β π(π(PathsOnβπ)π)π)) |
6 | 5 | 2exbidv 1927 |
. . . . . . . . 9
β’ (π = π β (βπβπ π(π(PathsOnβπ)π)π β βπβπ π(π(PathsOnβπ)π)π)) |
7 | 6 | ralsng 4677 |
. . . . . . . 8
β’ (π β (Vtxβπ) β (βπ β {π}βπβπ π(π(PathsOnβπ)π)π β βπβπ π(π(PathsOnβπ)π)π)) |
8 | 3, 7 | mpbird 256 |
. . . . . . 7
β’ (π β (Vtxβπ) β βπ β {π}βπβπ π(π(PathsOnβπ)π)π) |
9 | | difsnid 4813 |
. . . . . . . . . 10
β’ (π β (Vtxβπ) β (((Vtxβπ) β {π}) βͺ {π}) = (Vtxβπ)) |
10 | 9 | eqcomd 2738 |
. . . . . . . . 9
β’ (π β (Vtxβπ) β (Vtxβπ) = (((Vtxβπ) β {π}) βͺ {π})) |
11 | 10 | raleqdv 3325 |
. . . . . . . 8
β’ (π β (Vtxβπ) β (βπ β (Vtxβπ)βπβπ π(π(PathsOnβπ)π)π β βπ β (((Vtxβπ) β {π}) βͺ {π})βπβπ π(π(PathsOnβπ)π)π)) |
12 | | ralunb 4191 |
. . . . . . . 8
β’
(βπ β
(((Vtxβπ) β
{π}) βͺ {π})βπβπ π(π(PathsOnβπ)π)π β (βπ β ((Vtxβπ) β {π})βπβπ π(π(PathsOnβπ)π)π β§ βπ β {π}βπβπ π(π(PathsOnβπ)π)π)) |
13 | 11, 12 | bitrdi 286 |
. . . . . . 7
β’ (π β (Vtxβπ) β (βπ β (Vtxβπ)βπβπ π(π(PathsOnβπ)π)π β (βπ β ((Vtxβπ) β {π})βπβπ π(π(PathsOnβπ)π)π β§ βπ β {π}βπβπ π(π(PathsOnβπ)π)π))) |
14 | 8, 13 | mpbiran2d 706 |
. . . . . 6
β’ (π β (Vtxβπ) β (βπ β (Vtxβπ)βπβπ π(π(PathsOnβπ)π)π β βπ β ((Vtxβπ) β {π})βπβπ π(π(PathsOnβπ)π)π)) |
15 | 14 | ralbiia 3091 |
. . . . 5
β’
(βπ β
(Vtxβπ)βπ β (Vtxβπ)βπβπ π(π(PathsOnβπ)π)π β βπ β (Vtxβπ)βπ β ((Vtxβπ) β {π})βπβπ π(π(PathsOnβπ)π)π) |
16 | | fvex 6904 |
. . . . . 6
β’
(Vtxβπ) β
V |
17 | | raleq 3322 |
. . . . . . . 8
β’ (π£ = (Vtxβπ) β (βπ β π£ βπβπ π(π(PathsOnβπ)π)π β βπ β (Vtxβπ)βπβπ π(π(PathsOnβπ)π)π)) |
18 | 17 | raleqbi1dv 3333 |
. . . . . . 7
β’ (π£ = (Vtxβπ) β (βπ β π£ βπ β π£ βπβπ π(π(PathsOnβπ)π)π β βπ β (Vtxβπ)βπ β (Vtxβπ)βπβπ π(π(PathsOnβπ)π)π)) |
19 | | difeq1 4115 |
. . . . . . . . 9
β’ (π£ = (Vtxβπ) β (π£ β {π}) = ((Vtxβπ) β {π})) |
20 | 19 | raleqdv 3325 |
. . . . . . . 8
β’ (π£ = (Vtxβπ) β (βπ β (π£ β {π})βπβπ π(π(PathsOnβπ)π)π β βπ β ((Vtxβπ) β {π})βπβπ π(π(PathsOnβπ)π)π)) |
21 | 20 | raleqbi1dv 3333 |
. . . . . . 7
β’ (π£ = (Vtxβπ) β (βπ β π£ βπ β (π£ β {π})βπβπ π(π(PathsOnβπ)π)π β βπ β (Vtxβπ)βπ β ((Vtxβπ) β {π})βπβπ π(π(PathsOnβπ)π)π)) |
22 | 18, 21 | bibi12d 345 |
. . . . . 6
β’ (π£ = (Vtxβπ) β ((βπ β π£ βπ β π£ βπβπ π(π(PathsOnβπ)π)π β βπ β π£ βπ β (π£ β {π})βπβπ π(π(PathsOnβπ)π)π) β (βπ β (Vtxβπ)βπ β (Vtxβπ)βπβπ π(π(PathsOnβπ)π)π β βπ β (Vtxβπ)βπ β ((Vtxβπ) β {π})βπβπ π(π(PathsOnβπ)π)π))) |
23 | 16, 22 | sbcie 3820 |
. . . . 5
β’
([(Vtxβπ) / π£](βπ β π£ βπ β π£ βπβπ π(π(PathsOnβπ)π)π β βπ β π£ βπ β (π£ β {π})βπβπ π(π(PathsOnβπ)π)π) β (βπ β (Vtxβπ)βπ β (Vtxβπ)βπβπ π(π(PathsOnβπ)π)π β βπ β (Vtxβπ)βπ β ((Vtxβπ) β {π})βπβπ π(π(PathsOnβπ)π)π)) |
24 | 15, 23 | mpbir 230 |
. . . 4
β’
[(Vtxβπ) / π£](βπ β π£ βπ β π£ βπβπ π(π(PathsOnβπ)π)π β βπ β π£ βπ β (π£ β {π})βπβπ π(π(PathsOnβπ)π)π) |
25 | | sbcbi1 3838 |
. . . 4
β’
([(Vtxβπ) / π£](βπ β π£ βπ β π£ βπβπ π(π(PathsOnβπ)π)π β βπ β π£ βπ β (π£ β {π})βπβπ π(π(PathsOnβπ)π)π) β ([(Vtxβπ) / π£]βπ β π£ βπ β π£ βπβπ π(π(PathsOnβπ)π)π β [(Vtxβπ) / π£]βπ β π£ βπ β (π£ β {π})βπβπ π(π(PathsOnβπ)π)π)) |
26 | 24, 25 | ax-mp 5 |
. . 3
β’
([(Vtxβπ) / π£]βπ β π£ βπ β π£ βπβπ π(π(PathsOnβπ)π)π β [(Vtxβπ) / π£]βπ β π£ βπ β (π£ β {π})βπβπ π(π(PathsOnβπ)π)π) |
27 | 26 | abbii 2802 |
. 2
β’ {π β£
[(Vtxβπ) /
π£]βπ β π£ βπ β π£ βπβπ π(π(PathsOnβπ)π)π} = {π β£ [(Vtxβπ) / π£]βπ β π£ βπ β (π£ β {π})βπβπ π(π(PathsOnβπ)π)π} |
28 | 1, 27 | eqtri 2760 |
1
β’ ConnGraph
= {π β£
[(Vtxβπ) /
π£]βπ β π£ βπ β (π£ β {π})βπβπ π(π(PathsOnβπ)π)π} |