MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfconngr1 Structured version   Visualization version   GIF version

Theorem dfconngr1 27959
Description: Alternative definition of the class of all connected graphs, requiring paths between distinct vertices. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 15-Feb-2021.)
Assertion
Ref Expression
dfconngr1 ConnGraph = {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}
Distinct variable group:   𝑣,𝑔,𝑘,𝑛,𝑓,𝑝

Proof of Theorem dfconngr1
StepHypRef Expression
1 df-conngr 27958 . 2 ConnGraph = {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}
2 eqid 2819 . . . . . . . . 9 (Vtx‘𝑔) = (Vtx‘𝑔)
320pthonv 27900 . . . . . . . 8 (𝑘 ∈ (Vtx‘𝑔) → ∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑘)𝑝)
4 oveq2 7156 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑘(PathsOn‘𝑔)𝑛) = (𝑘(PathsOn‘𝑔)𝑘))
54breqd 5068 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝𝑓(𝑘(PathsOn‘𝑔)𝑘)𝑝))
652exbidv 1918 . . . . . . . . 9 (𝑛 = 𝑘 → (∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑘)𝑝))
76ralsng 4605 . . . . . . . 8 (𝑘 ∈ (Vtx‘𝑔) → (∀𝑛 ∈ {𝑘}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑘)𝑝))
83, 7mpbird 259 . . . . . . 7 (𝑘 ∈ (Vtx‘𝑔) → ∀𝑛 ∈ {𝑘}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)
9 difsnid 4735 . . . . . . . . . 10 (𝑘 ∈ (Vtx‘𝑔) → (((Vtx‘𝑔) ∖ {𝑘}) ∪ {𝑘}) = (Vtx‘𝑔))
109eqcomd 2825 . . . . . . . . 9 (𝑘 ∈ (Vtx‘𝑔) → (Vtx‘𝑔) = (((Vtx‘𝑔) ∖ {𝑘}) ∪ {𝑘}))
1110raleqdv 3414 . . . . . . . 8 (𝑘 ∈ (Vtx‘𝑔) → (∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ (((Vtx‘𝑔) ∖ {𝑘}) ∪ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))
12 ralunb 4165 . . . . . . . 8 (∀𝑛 ∈ (((Vtx‘𝑔) ∖ {𝑘}) ∪ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ∧ ∀𝑛 ∈ {𝑘}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))
1311, 12syl6bb 289 . . . . . . 7 (𝑘 ∈ (Vtx‘𝑔) → (∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ∧ ∀𝑛 ∈ {𝑘}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)))
148, 13mpbiran2d 706 . . . . . 6 (𝑘 ∈ (Vtx‘𝑔) → (∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))
1514ralbiia 3162 . . . . 5 (∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)
16 fvex 6676 . . . . . 6 (Vtx‘𝑔) ∈ V
17 raleq 3404 . . . . . . . 8 (𝑣 = (Vtx‘𝑔) → (∀𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))
1817raleqbi1dv 3402 . . . . . . 7 (𝑣 = (Vtx‘𝑔) → (∀𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))
19 difeq1 4090 . . . . . . . . 9 (𝑣 = (Vtx‘𝑔) → (𝑣 ∖ {𝑘}) = ((Vtx‘𝑔) ∖ {𝑘}))
2019raleqdv 3414 . . . . . . . 8 (𝑣 = (Vtx‘𝑔) → (∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))
2120raleqbi1dv 3402 . . . . . . 7 (𝑣 = (Vtx‘𝑔) → (∀𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))
2218, 21bibi12d 348 . . . . . 6 (𝑣 = (Vtx‘𝑔) → ((∀𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) ↔ (∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)))
2316, 22sbcie 3810 . . . . 5 ([(Vtx‘𝑔) / 𝑣](∀𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) ↔ (∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))
2415, 23mpbir 233 . . . 4 [(Vtx‘𝑔) / 𝑣](∀𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)
25 sbcbi1 3828 . . . 4 ([(Vtx‘𝑔) / 𝑣](∀𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) → ([(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))
2624, 25ax-mp 5 . . 3 ([(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)
2726abbii 2884 . 2 {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}
281, 27eqtri 2842 1 ConnGraph = {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1530  wex 1773  wcel 2107  {cab 2797  wral 3136  [wsbc 3770  cdif 3931  cun 3932  {csn 4559   class class class wbr 5057  cfv 6348  (class class class)co 7148  Vtxcvtx 26773  PathsOncpthson 27487  ConnGraphcconngr 27957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1057  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-hash 13683  df-word 13854  df-wlks 27373  df-wlkson 27374  df-trls 27466  df-trlson 27467  df-pths 27489  df-pthson 27491  df-conngr 27958
This theorem is referenced by:  isconngr1  27961
  Copyright terms: Public domain W3C validator