Proof of Theorem dfconngr1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-conngr 30207 | . 2
⊢ ConnGraph
= {𝑔 ∣
[(Vtx‘𝑔) /
𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} | 
| 2 |  | eqid 2736 | . . . . . . . . 9
⊢
(Vtx‘𝑔) =
(Vtx‘𝑔) | 
| 3 | 2 | 0pthonv 30149 | . . . . . . . 8
⊢ (𝑘 ∈ (Vtx‘𝑔) → ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑘)𝑝) | 
| 4 |  | oveq2 7440 | . . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (𝑘(PathsOn‘𝑔)𝑛) = (𝑘(PathsOn‘𝑔)𝑘)) | 
| 5 | 4 | breqd 5153 | . . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ 𝑓(𝑘(PathsOn‘𝑔)𝑘)𝑝)) | 
| 6 | 5 | 2exbidv 1923 | . . . . . . . . 9
⊢ (𝑛 = 𝑘 → (∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑘)𝑝)) | 
| 7 | 6 | ralsng 4674 | . . . . . . . 8
⊢ (𝑘 ∈ (Vtx‘𝑔) → (∀𝑛 ∈ {𝑘}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑘)𝑝)) | 
| 8 | 3, 7 | mpbird 257 | . . . . . . 7
⊢ (𝑘 ∈ (Vtx‘𝑔) → ∀𝑛 ∈ {𝑘}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) | 
| 9 |  | difsnid 4809 | . . . . . . . . . 10
⊢ (𝑘 ∈ (Vtx‘𝑔) → (((Vtx‘𝑔) ∖ {𝑘}) ∪ {𝑘}) = (Vtx‘𝑔)) | 
| 10 | 9 | eqcomd 2742 | . . . . . . . . 9
⊢ (𝑘 ∈ (Vtx‘𝑔) → (Vtx‘𝑔) = (((Vtx‘𝑔) ∖ {𝑘}) ∪ {𝑘})) | 
| 11 | 10 | raleqdv 3325 | . . . . . . . 8
⊢ (𝑘 ∈ (Vtx‘𝑔) → (∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ (((Vtx‘𝑔) ∖ {𝑘}) ∪ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) | 
| 12 |  | ralunb 4196 | . . . . . . . 8
⊢
(∀𝑛 ∈
(((Vtx‘𝑔) ∖
{𝑘}) ∪ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ∧ ∀𝑛 ∈ {𝑘}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) | 
| 13 | 11, 12 | bitrdi 287 | . . . . . . 7
⊢ (𝑘 ∈ (Vtx‘𝑔) → (∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ∧ ∀𝑛 ∈ {𝑘}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))) | 
| 14 | 8, 13 | mpbiran2d 708 | . . . . . 6
⊢ (𝑘 ∈ (Vtx‘𝑔) → (∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) | 
| 15 | 14 | ralbiia 3090 | . . . . 5
⊢
(∀𝑘 ∈
(Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) | 
| 16 |  | fvex 6918 | . . . . . 6
⊢
(Vtx‘𝑔) ∈
V | 
| 17 |  | raleq 3322 | . . . . . . . 8
⊢ (𝑣 = (Vtx‘𝑔) → (∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) | 
| 18 | 17 | raleqbi1dv 3337 | . . . . . . 7
⊢ (𝑣 = (Vtx‘𝑔) → (∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) | 
| 19 |  | difeq1 4118 | . . . . . . . . 9
⊢ (𝑣 = (Vtx‘𝑔) → (𝑣 ∖ {𝑘}) = ((Vtx‘𝑔) ∖ {𝑘})) | 
| 20 | 19 | raleqdv 3325 | . . . . . . . 8
⊢ (𝑣 = (Vtx‘𝑔) → (∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) | 
| 21 | 20 | raleqbi1dv 3337 | . . . . . . 7
⊢ (𝑣 = (Vtx‘𝑔) → (∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) | 
| 22 | 18, 21 | bibi12d 345 | . . . . . 6
⊢ (𝑣 = (Vtx‘𝑔) → ((∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) ↔ (∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))) | 
| 23 | 16, 22 | sbcie 3829 | . . . . 5
⊢
([(Vtx‘𝑔) / 𝑣](∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) ↔ (∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) | 
| 24 | 15, 23 | mpbir 231 | . . . 4
⊢
[(Vtx‘𝑔) / 𝑣](∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) | 
| 25 |  | sbcbi1 3846 | . . . 4
⊢
([(Vtx‘𝑔) / 𝑣](∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) → ([(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) | 
| 26 | 24, 25 | ax-mp 5 | . . 3
⊢
([(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) | 
| 27 | 26 | abbii 2808 | . 2
⊢ {𝑔 ∣
[(Vtx‘𝑔) /
𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} | 
| 28 | 1, 27 | eqtri 2764 | 1
⊢ ConnGraph
= {𝑔 ∣
[(Vtx‘𝑔) /
𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} |