Proof of Theorem dfconngr1
Step | Hyp | Ref
| Expression |
1 | | df-conngr 28551 |
. 2
⊢ ConnGraph
= {𝑔 ∣
[(Vtx‘𝑔) /
𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} |
2 | | eqid 2738 |
. . . . . . . . 9
⊢
(Vtx‘𝑔) =
(Vtx‘𝑔) |
3 | 2 | 0pthonv 28493 |
. . . . . . . 8
⊢ (𝑘 ∈ (Vtx‘𝑔) → ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑘)𝑝) |
4 | | oveq2 7283 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (𝑘(PathsOn‘𝑔)𝑛) = (𝑘(PathsOn‘𝑔)𝑘)) |
5 | 4 | breqd 5085 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ 𝑓(𝑘(PathsOn‘𝑔)𝑘)𝑝)) |
6 | 5 | 2exbidv 1927 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑘)𝑝)) |
7 | 6 | ralsng 4609 |
. . . . . . . 8
⊢ (𝑘 ∈ (Vtx‘𝑔) → (∀𝑛 ∈ {𝑘}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑘)𝑝)) |
8 | 3, 7 | mpbird 256 |
. . . . . . 7
⊢ (𝑘 ∈ (Vtx‘𝑔) → ∀𝑛 ∈ {𝑘}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) |
9 | | difsnid 4743 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (Vtx‘𝑔) → (((Vtx‘𝑔) ∖ {𝑘}) ∪ {𝑘}) = (Vtx‘𝑔)) |
10 | 9 | eqcomd 2744 |
. . . . . . . . 9
⊢ (𝑘 ∈ (Vtx‘𝑔) → (Vtx‘𝑔) = (((Vtx‘𝑔) ∖ {𝑘}) ∪ {𝑘})) |
11 | 10 | raleqdv 3348 |
. . . . . . . 8
⊢ (𝑘 ∈ (Vtx‘𝑔) → (∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ (((Vtx‘𝑔) ∖ {𝑘}) ∪ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
12 | | ralunb 4125 |
. . . . . . . 8
⊢
(∀𝑛 ∈
(((Vtx‘𝑔) ∖
{𝑘}) ∪ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ∧ ∀𝑛 ∈ {𝑘}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
13 | 11, 12 | bitrdi 287 |
. . . . . . 7
⊢ (𝑘 ∈ (Vtx‘𝑔) → (∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ∧ ∀𝑛 ∈ {𝑘}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))) |
14 | 8, 13 | mpbiran2d 705 |
. . . . . 6
⊢ (𝑘 ∈ (Vtx‘𝑔) → (∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
15 | 14 | ralbiia 3091 |
. . . . 5
⊢
(∀𝑘 ∈
(Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) |
16 | | fvex 6787 |
. . . . . 6
⊢
(Vtx‘𝑔) ∈
V |
17 | | raleq 3342 |
. . . . . . . 8
⊢ (𝑣 = (Vtx‘𝑔) → (∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
18 | 17 | raleqbi1dv 3340 |
. . . . . . 7
⊢ (𝑣 = (Vtx‘𝑔) → (∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
19 | | difeq1 4050 |
. . . . . . . . 9
⊢ (𝑣 = (Vtx‘𝑔) → (𝑣 ∖ {𝑘}) = ((Vtx‘𝑔) ∖ {𝑘})) |
20 | 19 | raleqdv 3348 |
. . . . . . . 8
⊢ (𝑣 = (Vtx‘𝑔) → (∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
21 | 20 | raleqbi1dv 3340 |
. . . . . . 7
⊢ (𝑣 = (Vtx‘𝑔) → (∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
22 | 18, 21 | bibi12d 346 |
. . . . . 6
⊢ (𝑣 = (Vtx‘𝑔) → ((∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) ↔ (∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))) |
23 | 16, 22 | sbcie 3759 |
. . . . 5
⊢
([(Vtx‘𝑔) / 𝑣](∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) ↔ (∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
24 | 15, 23 | mpbir 230 |
. . . 4
⊢
[(Vtx‘𝑔) / 𝑣](∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) |
25 | | sbcbi1 3777 |
. . . 4
⊢
([(Vtx‘𝑔) / 𝑣](∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) → ([(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
26 | 24, 25 | ax-mp 5 |
. . 3
⊢
([(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) |
27 | 26 | abbii 2808 |
. 2
⊢ {𝑔 ∣
[(Vtx‘𝑔) /
𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} |
28 | 1, 27 | eqtri 2766 |
1
⊢ ConnGraph
= {𝑔 ∣
[(Vtx‘𝑔) /
𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} |